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Abstract

Gene body methylation (gbM) is an ancestral and widespread feature in Eukarya, yet its adaptive value and evolutionary
implications remain unresolved. The occurrence of gbM within protein-coding sequences is particularly puzzling, because
methylation causes cytosine hypermutability and hence is likely to produce deleterious amino acid substitutions. We
investigate this enigma using an evolutionarily basal group of Metazoa, the stony corals (order Scleractinia, class
Anthozoa, phylum Cnidaria). We show that patterns of coral gbM are similar to other invertebrate species, predicting
wide and active transcription and slower sequence evolution. We also find a strong correlation between gbM and codon
bias, resulting from systematic replacement of CpG bearing codons. We conclude that gbM has strong effects on codon
evolution and speculate that this may influence establishment of optimal codons.
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Introduction
DNA methylation is an evolutionarily widespread epigenetic
modification found in plants, animals, and fungi. It is defined
as the covalent addition of a methyl group to the one of the
four DNA bases, predominantly on the fifth carbon of cyto-
sines within CG dinucleotides (CpGs), producing 5-methylcy-
tosine (5mC). Unlike other epigenetic modifications, DNA
methylation not only alters chromatin structure and tran-
scription, but it also changes the mutation rate of the under-
lying DNA. This is because 5mC undergoes deamination
reactions more readily than normal cytosine (Shen et al.
1994) and deamination produces thymine rather than uracil,
which is less likely to be accurately repaired (Zemach and
Zilberman 2010). Because of this hypermutability, sequences
that are heavily methylated in the germ-line become deficient
in CpGs, with corresponding increases in TpGs and CpAs
(Sved and Bird 1990). Hence, DNA methylation has evolution-
ary consequences outside of its direct physiological effects.

Evolutionary effects of 5mC hypermutability are apparent
in both vertebrate and invertebrate genomes. In mammals,
DNA methylation is ubiquitous, so that nearly all genomic
regions show lower than expected frequency of CpGs (Karlin
and Mr�azek 1996; McGaughey et al. 2014). The exception is
regions of elevated CpG content called CG islands that are
protected from DNA methylation (Jones 2012). In most in-
vertebrates, DNA methylation is not ubiquitous but patchy,
occurring primarily on CpGs within gene bodies (Suzuki
et al. 2007; Zemach et al. 2010). This intragenic form of
DNA methylation is referred to as gene body methylation

(gbM). In invertebrate genomes, gbM occurs preferentially
on actively and widely expressed genes, resulting in covari-
ations between genes’ CpG content, function, and expres-
sion patterns (Elango et al. 2009; Hunt and Brisson 2010;
Zemach et al. 2010, Sarda et al. 2012). Similar patterns of
genic methylation are found in plants (Feng et al. 2010;
Takuno and Gaut 2013; Tran et al. 2005; Zilberman et al.
2007) and mammals (Baubec et al. 2015).

Despite this widespread phylogenetic occurrence, gbM is
by no means universal. In several groups, such as yeast
(Saccharomyces cerevisiae), fruit fly (Drosophila mela-
nogaster), worm (Caenorhabditis elegans), and the basal plant
(Marchantia polymorpha), genic methylation is extremely
scarce or lost altogether (Capuano et al. 2014; Takuno et al.
2016). It has been proposed that the secondary loss of DNA
methylation occurs because its mutational costs outweighed
its adaptive value (Zemach et al. 2010). Indeed, even within
gene bodies, methylation occurs preferentially on exons
(Zemach et al. 2010; Wang et al. 2013), where mutations
are likely to have the greatest deleterious effect. In humans,
genic methylation increases deleterious de novo mutations
with paternal age (Francioli et al. 2015). Why, given its appar-
ently nonessential and outright mutagenic nature, has gbM
persisted for so long across such a diversity of taxa?

In this study, we investigate the evolutionary consequences
of 5mC on invertebrate coding sequences. Using the first
direct genome-wide characterization of DNA methylation
in a reef-building coral, we confirm previous studies showing
that gbM predicts active and stable gene expressive (Elango
et al. 2009; Hunt and Brisson 2010; Zemach et al. 2010, Sarda
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et al. 2012). We also test previous findings that in spite of 5mC
hypermutability, gbM predicts slower sequence evolution
(Park et al. 2011; Takuno and Gaut 2012). Finally, we exam-
ine gbM in the context of synonymous codon usage.
Because gbM occurs preferentially on a subset of inverte-
brate coding genes (Sarda et al. 2012), we hypothesized that
its mutagenic effects cause intragenomic variation in codon
bias. While methylation is often cited as an explanation for
patterns of codon usage (Kanaya et al. 2001; Sterky et al.
2004; Gonzalez-Ibeas et al. 2007; Qin et al. 2013; Duan et al.
2015), direct investigations of this hypothesis have been
lacking. As a basal metazoan predicted to have a typical
bimodal pattern of gbM (Dixon et al. 2014; Dimond and
Roberts 2016), the branching coral Acropora millepora was
well suited to address this problem.

Results

Using MBD-Seq to Quantify Gene Body Methylation
We used Methylation Binding Domain enrichment se-
quencing (MBD-seq) (Harris et al. 2010) to measure gbM
in A. millepora. The strength of methylation for 24,320 cod-
ing regions was quantified as the log2-fold difference be-
tween captured and flow-through fractions of MBD
enrichment preparations. We refer to this log2-fold differ-
ence as the MBD-score. Raw read data are publicly available
through the NCBI SRA database (SRA accession:
SRP074615). Analysis of the distribution of MBD-scores
(fig. 1A) showed that it was best described as a mixture of
two or more Gaussian components (supplementary fig. S1,
Supplementary Material online). MBD-score correlated with
CpGo/e, indicating that our measure of gbM overlapped
closely with historical patterns of germ-line methylation
(fig. 1B). As an MBD-score of 0 indicated equal representa-
tion in the captured and flow-through fractions we chose
this value to separate strongly and weakly methylated genes.
Genes with MBD-scores greater than 0 are referred to as
strongly methylated genes, those with scores less than 0 are
referred to as weakly methylated.

MBD-Score Is Linked with Gene Function and
Expression Patterns
MBD-score was associated with gene function. Analysis of
selected GO categories for biological processes revealed that
strongly methylated genes tend toward biological functions
that are spatially and temporally stable, such as DNA metab-
olism, ribosome biogenesis, translation, RNA metabolism, and
transcription. Weakly methylated genes tended to involve
biological functions that are spatially and temporally regu-
lated, such as cell–cell signaling, response to stimulus, signal
transduction, cell adhesion, defense response, and develop-
ment (supplementary fig. S2A, Supplementary Material
online). Clustering of KOG categories for higher or lower
MBD-scores further supported these results (supplementary
fig. S2B, Supplementary Material online).

To test if weak gbM is a signature for inducible transcription
we correlated MBD-score with RNA-seq data, comparing dif-
ferent developmental stages and environmental conditions.
For developmental stage, log2-fold differences in transcript
abundance between A. millepora adults and larvae (described
in Dixon et al. 2015) were negatively correlated with MBD-
score (fig. 2A). Significantly differentially expressed genes
(DEGs at FDR<0.01) were 1.4 times more frequent among
weakly methylated genes (fig. 2B). A similar trend was found
for variation in expression due to environmental conditions
(fig. 2C and D). Here, clonal fragments of adult colonies were
exposed to two environmentally distinct regimes for 3 months
prior to sampling for RNA-seq (Dixon et al. 2014). Differential
expression (FDR<0.01) between environmental regimes was
2.2 times more frequent among weakly methylated genes.

MBD-score also showed weak but significant correlation
with transcript abundance (supplementary fig. S3A and B,
Supplementary Material online). Highly expressed genes
were on average strongly methylated (supplementary fig. S3C
and D, Supplementary Material online). The top 5% most
strongly methylated genes however showed lower average ex-
pression (supplementary fig. S3E, Supplementary Material on-
line). This indicates that while gbM is generally associated with
elevated transcription, extreme levels may be inhibitory. This
appears to be particularly true for short genes, as the removal
of coding sequences shorter than 800 bp mitigated the trend
(supplementary fig. S3F, Supplementary Material online).

Phylogeny
We used a conserved set of 192 coding sequences for phylo-
genetic construction. These sequences had>75% amino acid
identity and 80% representation among the 20 species.
Phylogenetic construction was performed using the
GTRGAMMA model in RAxML (Stamatakis 2014). All bipar-
tition had 100% bootstrap support based on 1,000 repeti-
tions. All orders, families, and genera formed monophyletic
groups (fig. 3). Species from the ‘complex’ and ‘robust’ coral
clades (Romano and Palumbi 1996; Kitahara et al. 2010) also
formed monophyletic groups. Repetitions of tree building
with less conserved sets of orthologs (70%, 60%, 50%, and
40% representation among species) all produced the same
topology, but with lower bootstrap values. For the species in

FIG. 1. MBD-score is bimodally distributed and correlates with CpGo/e.
(A) Distribution of MBD-score (log2-fold difference between enriched
and flow-through MBD-seq libraries). Higher values indicate stronger
methylation. (B) Scatter plot of MBD-score and CpGo/e. Lower values
for CpGo/e are expected with stronger methylation. Asterisks indicate
significance based on Spearman’s rank-order correlation test (ns>0.05;
*<0.05; **<0.01; *** <0.001; ****<0.0001).
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which they overlapped, our tree agreed fully with that pub-
lished by Kitchen et al. (2015).

Strongly Methylated Genes Evolve Slowly
Pairwise comparisons between orthologs from A. millepora
and each other species revealed that strongly methylated

genes evolve slowly. The trend was strongest for nonsynon-
ymous substitutions (dN). When orthologs from A. millepora
were compared with other Acropora species, mean dN was
between 43% and 68% higher for weakly methylated genes
than strongly methylated genes (fig. 3; supplementary fig. S4,
Supplementary Material online). Pairwise comparisons with all

FIG. 2. gbM predicts transcriptional stability across developmental stages and environmental regimes. (A) Scatter plot of MBD-score and tran-
scriptional variation (given as log2-fold differences) between adult colonies and juvenile offspring. Red line shows least squared regression. Asterisks
indicate significance based on Spearman’s rho. (B) Distribution of differentially expressed genes (DEGs; FDR<0.01) between juveniles and adults.
All genes were divided into 20 quantiles ranked by MBD-score. The number of differentially expressed genes in each quantile was plotted against
the median MBD-score for that quantile. Enrichment of DEGs among the weakly methylated genes (MBD-score<0) compared with strongly
methylated genes (MBD-score�0) is given as the odds ratio (OR) for Fisher’s exact test. Red line shows a smoothed trace of the points. (C, D) The
same figures representing transcriptional variation between populations of clonal colony fragments transplanted between distinct habitats
described in Dixon et al. (2014). Asterisks indicate significance based on Spearman’s rank-order correlation test (ns>0.05; *<0.05; **<0.01;
*** <0.001; ****<0.0001).

FIG. 3. Relationship between MBD-score and substitution rates across the anthozoan phylogeny. All nodes in the phylogeny have 100% bootstrap
support based on 1,000 replicates. Line plots trace the mean substitution rates for all genes divided into 10 quantiles ranked by MBD-score. Line
color indicates which species A. millepora was compared with to estimate pair-wise substation rates. The top row of line plots shows comparisons
within Acropora. The middle row shows corals outside of Acropora. The third row shows comparisons with anemone species. For each panel, the
correlation (Spearman’s rho) and statistical significance indicate the median values across all included species. Individual correlations are reported
in the Supplementary Material online. Asterisks indicate significance based on Spearman’s rank-order correlation test (ns>0.05; *<0.05; **<0.01;
*** <0.001; ****<0.0001).
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species outside of the Acropora genus produced similar results,
with mean dN between 17% and 52% (mean¼ 36 6 SEM 3%)
higher for weakly methylated genes (fig. 3; supplementary fig.
S5, Supplementary Material online). Negative correlation be-
tween dN and MBD-score was significant for all species com-
parisons (P� 0.001; Spearman’s Rank test).

The relationship between MBD-score and synonymous
substitution rate (dS) was less pronounced than for dN,
and varied with evolutionary proximity between species.
Comparison of orthologs between A. millepora and other
Acropora species showed no relationship (fig. 3).
Comparisons with corals outside of Acropora however,
showed a significant negative relationship, with an average
of 17% higher mean dS for weakly methylated genes (fig. 3;
supplementary fig. S6, Supplementary Material online). The
correlations with the three anemone species were weaker,
although still significant. As most of these comparisons
were saturated for synonymous substitutions they should
be treated with caution. Analysis of dN/dS values gave similar
results to dN for all groups of species (fig. 3).

Strongly Methylated Genes Show Greater Codon Bias
Because DNA methylation alters mutation patterns, we hy-
pothesized that gbM shapes synonymous codon usage in
stony corals. Specifically, we predicted that strong gbM pro-
duces codon bias via mutational replacement of codons bear-
ing CpG dinucleotides (Kanaya et al. 2001; Qin et al. 2013). To
test this we correlated MBD-scores with three distinct indices
of codon bias: frequency of optimal codons (Fop) (Ikemura
1981), codon adaptation index (CAI) (Sharp and Li 1987a),
and effective number of codons (Nc) (Wright 1990). Fop and
CAI each quantify the preference for a set of optimal codons
in the coding sequence. Higher values for these metrics indi-
cate stronger codon bias. Nc quantifies nonrandom synony-
mous codon usage without assuming optimal codons. It is
bounded between 1 (indicating complete bias, or use of only
20 codons for the 20 amino acids) and 64 (indicating com-
pletely neutral codon usage) (Wright 1990). All three indices
correlated significantly with MBD-score (fig. 4). To assess the
extent to which codon bias was driven by CpG hypermut-
ability we recalculated CAI estimates using the same relative

adaptiveness values (W) (see Methods) for each codon, but
excluding the five amino acids coded for by CpG bearing
codons (Serine, Proline, Threonine, Alanine, and Arginine).
This substantially weakened the correlation from 0.38
(Spearman’s rho; P� 0.0001) to 0.17, although it remained
significant (P� 0.0001). In contrast, recalculation of CAI
based solely on these five amino acids strengthened the cor-
relation (q¼ 0.42; supplementary fig. S7, Supplementary
Material online), indicating that hypermutability of CpGs
due to gbM has a strong influence on codon usage.

CpG Codons Are under-Represented in Highly
Expressed Genes
To further explore the influence of 5mC hypermutability on
codon bias, we examined usage of CpG codons in highly
expressed genes. As we did not have gene expression data
for all species we first examined usage in annotated ribosomal
protein genes with the assumption that these genes are highly
expressed. For each species, relative synonymous codon usage
(RSCU) of CpG codons was depressed in ribosomal protein
genes (supplementary fig. S8A, Supplementary Material on-
line). To ensure that this did not result from variation in
overall GC content we showed that mean RSCU of CpG
codons was significantly lower than that of codons with
GC, GG, or CC dinucleotides (t-tests; P for all species<0.01).

For A. millepora, we assessed depression of CpG codons in
highly expressed genes using three additional metrics: DRSCU
(the difference in relative usage between the top 5% and
bottom 5% expressed genes), rRSCU (the RSCU calculated
for a concatenation of all ribosomal protein genes), and W
(the relative adaptiveness of each codon; see Methods). With
one exception that had neutral usage, all CpG codons were
underrepresented for all three metrics (supplementary fig.
S8B–D, Supplementary Material online). Hence, CpG bearing
codons are depressed in highly expressed genes.

Underrepresentation of CpG Codons Matches
Expectations for 5mC Hypermutability
To further illustrate that loss of CpG codons is due to 5mC
hypermutability, we examined RSCU for the five amino acids
coded for by CpG bearing codons. Four of these (Threonine,

FIG. 4. Correlation between MBD-score and indices of codon bias. (A) Fop. (B) CAI. (C) Nc. Red lines trace least squared linear regression. Asterisks
indicate significance based on Spearman’s rank-order correlation test (ns>0.05; *<0.05; **<0.01; *** <0.001; ****<0.0001).
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Proline, Alanine, and Serine) are coded for by NCG codons, in
which the CpG occupies the second and third positions of the
codon. For these codons, 5mC> T mutations on the sense
strand necessarily produce amino acid changes, which are
expected to be rare due to purifying selection. In contrast,
5mC> T substitutions on the antisense strand produce silent
substitutions (G>A within the codon) (supplementary fig.
S9A, Supplementary Material online). For this reason, we pre-
dicted that 5mC hypermutability would increase the usage of
NCA codons at the expense of NCG codons. To show this, we
plotted RSCU of synonymous codons against MBD-score,
illustrating positive relationships for NCA codon usage
(Spearman’s rho between 0.156 and 0.196; P� 0.001) and op-
posing negative relationships for NCG codon usage (fig. 5).
Correlations of NCA codon usage with MBD-score were sig-
nificantly stronger than other non-CpG codons (t-test; P< 0.
01), indicating that NCA codons increase preferentially with
stronger methylation. Hence for these four amino acids, de-
pression of CpG codons in strongly methylated genes occurs
through silent 5mC> T substitutions on the antisense strand.
Moreover, all NCA codons were identified as optimal codons
(supplementary table S1, Supplementary Material online),
and their mean relative adaptiveness (for which the maxi-
mum is 1) was 0.99 (supplementary table S2, Supplementary
Material online). These data indicate that NCA codons re-
place NCG codons in strongly methylated genes.

The second group of CpG bearing codons is the CGN
codons, which code for arginine. These are expected to evolve
differently because 5mC> T substitutions on both the sense
and antisense stands produce amino acid changes (supple
mentary fig.S9A, Supplementary Material online). Although
the trend is weak (r¼�0.06; P< 0.0001), arginine content is
negatively correlated with MBD-score (supplementary fig.
S9B, Supplementary Material online), suggesting a slight shift
in arginine content due to CpG hypermutability.

Summarizing Interrelationships between Gene
Characteristics
To summarize the relationships between gbM and other gene
characteristics we performed principal component analysis
(PCA) on all coding regions for which we had MBD-scores
and substitution rate estimates. Pair-wise estimates of dN and

dS between A. millepora and Siderastrea siderea were used
because it was the species outside of the genus Acropora with
the greatest number of orthologs. Substitution rates based on
other species produced qualitatively similar results. Variation
in measures of gbM and codon bias was captured largely by
the first principal component (34.0% variance explained) (fig.
6). While the indices of codon bias often correlated most
strongly with one another, the strongest alternative predictor
for all three was historical germ-line methylation as measured
by CpGo/e (supplementary table S3, Supplementary Material
online). Variation in transcript abundance, gene length, and
substitution rates was captured largely by the second princi-
pal component (14.2% variance explained) (fig. 6).

Discussion

Gene Body Methylation Is a Signature of Broad and
Stable Expression
We showed that strongly methylated genes in A. millepora
tend to have constitutive and ubiquitous functions and are
less likely to be differentially expressed across developmental
stages and environmental regimes. These results corroborate
earlier findings from diverse taxa including plants (Aceituno
et al. 2008; Coleman-Derr and Zilberman 2012; Takuno and
Gaut 2012), cnidarians (Sarda et al. 2012; Dimond and Roberts
2016), mollusk (Gavery and Roberts 2010, 2013), arthropods
(Elango et al. 2009; Wang et al. 2013), and a basal chordate
(Suzuki et al. 2013; Keller et al. 2015). The relationship with
differential expression in response to environmental regimes
suggests the intriguing possibility that gbM could modulate
gene expression plasticity.

We also found a positive correlation between gbM and
transcript abundance (supplementary fig. S3, Supplementary
Material online), indicating that intermediately methylated
genes are highly transcribed, while lowly methylated and ex-
tremely strongly methylated genes tend toward lower tran-
scription. These results are similar to previous findings in
plants (Zhang et al. 2006; Zilberman et al. 2007; Zemach
et al. 2010; Li et al. 2012; Wang et al. 2015), corals (Dimond
and Roberts 2016), mollusk (Gavery and Roberts 2013; Wang
et al. 2015), and human (Jjingo et al. 2012), indicating that this
connection between gbM and expression is evolutionarily
ancient and widely conserved.

FIG. 5. Depression of CpG bearing codons occurs via replacement with synonymous NCA codons. Lines show smoothed traces of the relationship
between RSCU and MBD-score for the indicated codon. Black lines indicate CpG bearing codons. Green lines indicate NCA codons. Grey lines
indicate all other codons. Opposing trends for NCA and NCG codons support the inference that NCA codons replace NCG codons in strongly
methylated genes.
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Gene Body Methylation and Evolutionary Rates
We show that gbM negatively correlates with substitution
rates. This finding is consistent with previous results from
pants (Takuno and Gaut 2012; Wang et al. 2015) and animals
(Park et al. 2011; Sarda et al. 2012; Keller et al. 2015). Still, PCA
revealed that while substitution rates are significantly nega-
tively correlated with gbM, they correlate more strongly with
transcript abundance—a well-known trend described in bac-
teria, plants, fungi, and animals (P�al et al. 2001; Subramanian
and Kumar 2004; Drummond et al. 2005; Drummond and
Wilke 2008; Yang and Gaut 2011). This ubiquitous negative
correlation between substitution rate and expression is ex-
plained by stronger purifying selection against protein mis-
folding in highly expressed genes. Because they have a greater
cumulative opportunity for errors and misfolding, mutations
in highly expressed genes pose greater fitness costs than those
in lowly expressed genes (Drummond et al. 2005). Similar
logic can be applied to broadly expressed genes, as they are
active in a greater number of cells and tissues (Duret and
Mouchiroud 2000), must operate in a greater variety of cel-
lular millieus (Hastings 1996), and undergo more translational
events at the scale of the entire organism. Whereas nonsyn-
onymous substitutions affect the probability of protein mis-
folding through direct destabilization, synonymous
substitutions most likely exert a similar but weaker effect
by lowering translational accuracy (Akashi 1994;

Drummond and Wilke 2008). Hence, both dN and dS are
expected to be lower in highly and broadly expressed genes.
We have shown that in our system, highly expressed genes
tend to be strongly methylated (supplementary fig. S3,
Supplementary Material online), and strongly methylated
genes tend toward broad, constitutive transcription (fig 2;
supplementary fig. S2, Supplementary Material online). We
conclude that the observed correlation between gbM and
substitution rates is most parsimoniously explained by the
occurrence of gbM on genes that are under stronger purifying
selection because of their expression patterns. A corollary of
this conclusion is that purifying selection generally outweighs
the effects of 5mC hypermutability. Hence, the paradox that
gbM not only causes hypermutability but also correlates with
sequence conservation can be explained by the fact that
strongly methylated genes tend to undergo strong selection.

Gene Body Methylation Shapes Codon Usage
Codon bias occurs for two reasons. The first is mutational
bias, where differences in mutation rates across species and
genomic contexts produce nonrandom variation in synony-
mous codon usage (Plotkin and Kudla 2011). The second
mechanism is natural selection, which requires that synony-
mous mutations affect organismal fitness (Behura and
Severson 2013). In our case, mutational processes mediated
by gbM appear to be the stronger source of variation. We
found that gbM correlates strongly with three separate indi-
ces of codon bias (fig. 4). Analysis of RSCU values for NCG
codons was consistent with codon bias arising largely through
silent 5mC> T substitutions on the antisense stand (fig. 5;
supplementary fig. S9A, Supplementary Material online). In
other words, gbM causes codon bias by shifting usage of NCG
codons to NCA codons.

When assessing whether codon bias is due to selection,
researchers examine whether it occurs in genes where trans-
lation accuracy and efficiency are most important. Evidence
that codon bias is due to selection includes (1) positive cor-
relation with expression level, (2) positive correlation with
breadth of expression, and (3) negative correlation with syn-
onymous substitution rate (Sharp and Li 1987b; Duret 2002;
Zhang and Li 2004; Plotkin and Kudla 2011; Behura and
Severson 2013). As ours and previous studies have shown,
gbM covaries with each of these factors. In other words, gbM
occurs on the types of genes predicted to undergo strongest
selection on codon usage. This fact highlights the need for
caution when attributing codon bias to selection, since in our
case codon bias results largely from mutation. Here, relation-
ships with dS are of particular interest, because low dS can
reflect selection on synonymous codons (Akashi 1994;
Drummond and Wilke 2008). In our PCA, dS was nearly or-
thogonal to measures of gbM and codon bias. This result
indicates that if A. millepora harbors codon bias due to selec-
tion, it is probably best predicted by expression level, and is
dwarfed by mutational effect of gbM.

Although we attribute codon bias largely to mutation, this
may still produce a potentially adaptive result—establishing a
set of preferred and unpreferred codons in constitutively ac-
tive genes. Optimal translation dynamics could then be

FIG. 6. PCA of gene features in A. millepora. The first principal com-
ponent explained 34.0% of variation and correlated primarily with
measures of gbM and codon bias. The second principal component
explained 14.2% of variation and correlated primarily with gene
length, transcript abundance, and substitution rates. Variables in-
cluded in the analyses are: normalized CpG content (CpGo/e), Nc,
GC content of coding regions (GC), nonsynonymous substitution
rate (dN), synonymous substitution rate (dS), length of coding region
(length), transcript abundance (mRNA level), Fop, log2-fold differ-
ence between captured and flow-through fractions of methylation
binding domain enrichment libraries (MBD-score), and CAI.
Substitution rates are pair-wise estimates between A. millepora and
S. siderea.
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achieved through evolution of tRNA abundances to match
these preferred and unpreferred codons, obviating the need
for selection of individual codons on a site-by-site basis. To
put it another way, selection coefficients for individual syn-
onymous codons will be exceedingly small (Bulmer 1987). In
contrast, if a set of preferred codons is mutationally estab-
lished in constitutively expressed genes, alleles that control
the abundance of appropriate tRNAs could have stronger
effects more amenable to natural selection. To be clear, we
are not proposing that gbM originally evolved for this pur-
pose. However, if its original function was linked with consti-
tutively active expression, as appears to be the case from
studies of plants (Takuno and Gaut 2012), invertebrates
(Sarda et al. 2012), and mammals (Baubec et al. 2015), then
CpG replacement coupled with coevolution of tRNAs pro-
vides an efficient means of evolving optimal codons in the
genes where they are most beneficial.

An advantage of mutation-driven codon bias is that it
could be maintained even in the absence of efficient selection,
so it would be particularly beneficial for organisms with rel-
atively small population size or otherwise inefficient selection.
If some adaptive value of gbM is indeed related to mainte-
nance of codon usage, it is not surprising that organisms such
as yeast, fly, and worm are able to exist without it (Capuano
et al. 2014); due to their large population sizes their optimal
codon usage can be maintained by selection alone. At a min-
imum, it seems likely that tRNA pools have evolved in re-
sponse to methylation-induced codon bias. This hypothesis
could be explored through phylogenetic comparison of tRNA
abundances between clades that independently lost or re-
tained gbM.

Conclusions and Outlook
Here, we present three primary findings on gbM in stony
corals: (1) gbM is most pronounced in genes with broad
and stable expression; (2) gbM predicts sequence conserva-
tion; and (3) hypermutability due to gbM drives codon bias.
Conserved occurrence of gbM on constitutively expressed
genes in plants and the basal metazoan examined here indi-
cates an evolutionarily ancient function involving selective
pressure for accurate and stable gene expression. One means
of improving translation fidelity is the use of optimal codons.
Given its capacity to establish preferred and unpreferred co-
dons in actively expressed genes, gbM could potentially influ-
ence evolution of optimal codons.

Materials and Methods
For detailed description of methods and materials see supple
mentary methods, Supplemental Material online.
Instructions, scripts, and example output files for computa-
tional methods used in this study are available on GitHub
(https://github.com/grovesdixon/metaTranscriptomes, last
accessed 17 May 2016).

MBD-Seq
To quantify gbM in A. millepora we used methyl-CpG binding
domain protein-enriched sequencing (MBD-seq). Enrichment
reactions were performed using the MethylCap kit

(Diagenode Cat. No. C02020010). Raw reads from the
MBD-sequencing libraries were trimmed using cutadapt
(Martin 2011) and mapped to coding sequences extracted
from the A. millepora reference transcriptome (Moya et al.
2012). MBD-scores were calculated as the log2-fold difference
between the MBD-enriched and flow-through libraries using
DESeq2 (Love et al. 2014).

Ortholog Comparisons
Transcriptomic data from 17 species of Scleractinia (stony
corals) and 3 species of Actiniaria (anemones) were down-
loaded from the web (supplementary table S4,
Supplementary Material online; Schwarz et al. 2008;
Sunagawa et al. 2009; Polato et al. 2011; Shinzato et al.
2011; Moya et al. 2012; Kenkel et al. 2013; Traylor-Knowles
et al. 2011; Sun et al. 2013; Maor-Landaw et al. 2014; Nordberg
et al. 2014; Willette et al. 2014; Kitchen et al. 2015; Davies et al.
forthcoming). Coding sequences were extracted based on
BlastX (Altschul et al. 1997) alignments to the Nematostella
vectensis (Nordberg et al. 2014) and Acropora digitifera
(Shinzato et al. 2011) reference proteomes using a custom
perl script. Orthologs were identified based on reciprocal best
hits (BLASTP) (Altschul et al. 1990) using custom python
scripts. Protein alignments were performed using MAFFT
(Katoh and Standley 2013) and reverse translation was per-
formed using Pal2Nal (Suyama et al. 2006). Substitution rates
were estimated using PAML (Yang 2007). Phylogenetic con-
struction was performed with the rapid bootstrapping algo-
rithm (GTRGAMMA model) with 1,000 iterations using
RAxML (Stamatakis 2014). Gene expression datasets were
generated using Tag-based RNA-seq (Meyer et al. 2011;
Dixon et al. 2014, 2015).

Codon Bias
We tested for relationships between MBD-score and synon-
ymous codon usage using four metrics: RSCU (Sharp et al.
1986), Fop (Ikemura 1981), CAI (Sharp and Li 1987a), and the
Nc (Wright 1990). CAI and RSCU were calculated using cus-
tom python scripts. Fop and Nc were calculated using
CodonW (Peden 1999) (http://codonw.sourceforge.net//
culong.html, last accessed 17 May 2016).

Statistical Analyses
Statistical analyses of the relationship between MBD-score
and other gene characteristics were performed in R (R Core
Team 2015). Significance for correlations was established us-
ing Spearman’s rank-order correlation test. Significance tests
for differences in counts between the strongly methylated
and weakly methylated classes were performed using
Fisher’s exact tests (Fisher 1922). PCA was performed using
prcomp function in R.

Supplementary Material
Supplementary methods, tables S1–S4, and figures S1–S11 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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