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1  | INTRODUC TION

The alarming effects of climate change on marine environments 
have led to a growing interest in Ecological Epigenetics. This rela-
tively new field focused on the interrelationships between environ-
ment, epigenetic modification, gene expression, and phenotypic 
variation (Bossdorf et  al.,  2008), has the potential to improve 
forecasting and conservation of marine ecosystems. For instance, 
epigenetic modifications are hypothesized to mediate phenotypic 
plasticity, a mechanism important for resilience to environmental 
change (Eirin-Lopez & Putnam,  2019; Reusch,  2013). In humans, 
individuals prenatally exposed to famine show persistent differ-
ences in DNA methylation at relevant genes alongside alterations 
in disease risk (Heijmans et al., 2008; Painter et al., 2005). There 
is evidence that effects may extend even to the grandchildren of 

those who experienced food shortage (Kaati et al., 2007). Evidence 
from other mammals adds further support for such intergenera-
tional, and even transgenerational effects (Irmler et  al.,  2020; 
Radford et  al.,  2014). In one remarkable case, traumatic olfac-
tory conditioning in male mice was reported to produce epigen-
etic effects in F1s, and behavioural sensitivity even in F2s (Dias & 
Ressler, 2014). Intergenerational effects and maternal effects have 
also been reported in plants (Feil & Fraga, 2012), corals (Putnam & 
Gates, 2015; Liew et al., 2018; Liew et al., 2020), and sea urchins 
(Strader et al., 2019; Wong et al., 2018; Wong et al., 2018). While 
such reports are exciting, it is important to maintain a reserved 
view on the overall importance of epigenetics for adaptation, es-
pecially as many published examples await independent replication 
(Horsthemke, 2018) or have had attempts at replication fail to pro-
duce the same results (Irmler et al., 2020).
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Abstract
Interrogation of chromatin modifications, such as DNA methylation, has the potential 
to improve forecasting and conservation of marine ecosystems. The standard method 
for assaying DNA methylation (whole genome bisulphite sequencing), however, is 
currently too costly to apply at the scales required for ecological research. Here, we 
evaluate different methods for measuring DNA methylation for ecological epigenet-
ics. We compare whole genome bisulphite sequencing (WGBS) with methylated CpG 
binding domain sequencing (MBD-seq), and a modified version of MethylRAD we 
term methylation-dependent restriction site-associated DNA sequencing (mdRAD). 
We evaluate these three assays in measuring variation in methylation across the 
genome, between genotypes, and between polyp types in the reef-building coral 
Acropora millepora. We find that all three assays measure absolute methylation levels 
similarly for gene bodies (gbM), as well as exons and 1 Kb windows with a minimum 
Pearson correlation 0.66. Differential gbM estimates were less correlated, but still 
concurrent across assays. We conclude that MBD-seq and mdRAD are reliable and 
cost-effective alternatives to WGBS. The considerably lower sequencing effort re-
quired for mdRAD to produce comparable methylation estimates makes it particu-
larly useful for ecological epigenetics.
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A notable feature found in plants and invertebrates is an as-
sociation between gene body methylation (methylation of CpG 
sites within coding regions; gbM), and gene expression. In both 
groups, genes with gbM tend to be actively and stably expressed, 
whereas those without gbM tend toward less active, inducible 
expression (Dimond & Roberts,  2016; Dixon et  al.,  2014, 2016; 
Gavery & Roberts, 2013; Sarda et al., 2012; Takuno & Gaut, 2012, 
2013; Takuno et al., 2016; Zemach & Zilberman, 2010). Although 
gbM does not systematically regulate gene expression in plants or 
animals (Bewick et al., 2016, 2018, 2019; Choi et al., 2020; Harris 
et al., 2019; Zilberman, 2017), comparisons between populations 
may still be ecologically informative. Indeed, in the coral Acropora 
millepora, comparative methylomics predicted fitness character-
istics of transplanted corals better than either SNPs or gene ex-
pression (Dixon et  al.,  2018). The potential to predict fitness in 
novel conditions is especially important for conservation efforts 
involving outplanting individuals to maintain and rescue wild pop-
ulations (van Oppen et al., 2015, 2017). Hence there is a need for 
cost-effective examination of chromatin modifications in ecologi-
cal contexts. While chromatin marks such as histone modifications 
are undoubtedly important (Eirin-Lopez & Putnam,  2019), DNA 
methylation is currently the easiest to measure, and the best-stud-
ied (Hofmann, 2017).

Here, we use a model reef-building coral, Acropora millepora, to 
benchmark methods for assaying DNA methylation. Reef-building 
corals are prime candidates for the application of ecological epi-
genetics. They are exceptional both in their socioecological value, 
and sensitivity to anthropogenic change (Cesar,  2000; Foden 
et al., 2013). Furthermore, as they are long-lived and sessile, they can-
not migrate in response to suboptimal conditions, and must instead 
depend upon plasticity. Using this system, we compare three assays 
for measuring DNA methylation: Whole genome bisulphite sequenc-
ing (WGBS), methylated CpG binding domain sequencing (MBD-seq) 
(Serre et al., 2009), and a modified version of the MethylRAD (Wang 
et  al.,  2015). WGBS, considered the gold standard for measuring 
DNA methylation, works by chemical conversion of unmethylated 
cytosines to uracils. Following PCR amplification, these bases are 
read as thymines. Hence, when mapped against a reference, fold 
coverage of reads indicating cytosine at a given site relative to fold 
coverage indicating thymines quantifies the rate at which the site 
was methylated in the original DNA isolation. MBD-seq works by 
capturing methylated DNA fragments with methyl-CpG-binding do-
mains affixed to magnetic beads. This methodology has been used 
previously for ecological studies in A. millepora (Dixon et al., 2016, 
2018) and benchmarked against bisulphite sequencing in cultured 
embryonic stem cells (Harris et  al.,  2010). MethylRAD selects for 
methylated DNA through the activity of methylation-dependent 
restriction enzymes. DNA is digested with these enzymes, produc-
ing sticky ends exclusively near methylated recognition sites that 
allow for adapter ligation and sequencing. Methylation is quantified 
based on resulting fold coverage within a given region. The origi-
nal MethylRAD protocol involved size selection for short fragments 
that were cut on both sides of palindromic methylated recognition 

sequences (Wang et al., 2015). We have modified the protocol by 
size-selecting for all digestion-derived fragments in the 170–700 bp 
range. The method is now conceptually similar to the genotyping 
by sequencing (GBS) protocol described in Elshire et al.  (2011) and 
Andrews et al.  (2016). To differentiate it from the original methyl-
RAD, we refer to it as methylation-dependent restriction site-asso-
ciated DNA sequencing (mdRAD).

With these three assays, we examine variation in methylation be-
tween genomic regions, between two polyp types (axial and radial), 
and between coral colonies (genotypes). While they require less se-
quencing effort, and are less expensive to prepare on a per-sample 
basis, MBD-seq and mdRAD libraries do not provide quantitative, 
single-base resolution achievable with the gold standard WGBS. 
Hence MBD-seq and mdRAD represent a tradeoff of spatial and 
quantitative precision in exchange for larger sample sizes achievable 
at equivalent cost. To aid in the evaluation of these competing fea-
tures, we compare results from each assay to assess how consis-
tently they measure methylation, as well as the optimal sequencing 
effort to maximize sensitivity while minimizing costs.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

Two adult colonies of A. millepora were collected by SCUBA on 25 
November 2018, one from Northeast Orpheus (labelled N12), and 
one from Little Pioneer Bay (labelled L5), under the Great Barrier 
Reef Marine Park Authority permit G18/41245.1. Colonies were 
maintained in the same raceway with flow of unfiltered seawater 
for 22 days. Branches from each colony were submerged in 100% 
ethanol and immediately placed at –80°C for 48 hr. Samples were 
then maintained at –20°C or on ice for approximately 48 hr during 
transport to the laboratory where they were again stored at –80°C 
until processing.

2.2 | DNA Isolation

For each axial polyp sample, the very tips of four branches were 
cut off and pooled. For radial polyps, similar amounts of tissue 
were pooled from the sides of the same four branches. Tissue sam-
ples were lysed in Petri dishes with 2  ml of lysis buffer from an 
RNAqueous Total RNA Isolation Kit (Cat No. AM1912). DNA was 
isolated using phenol:chloroform:isoamyl alcohol with additional pu-
rification using a Zymo DNA cleanup and concentrator kit (Cat No. 
D4011) (Appendix S2). Isolations were quantified using a Quant-iT 
PicoGreen dsDNA Assay Kit (Cat No. P7589). The same DNA isola-
tions were used for each downstream methylation assay. We iso-
lated three replicates from each genotype-tissue pairing, for a total 
of 12 isolations (two colonies, two tissues, three replicates per). In 
downstream analyses, we use treatment groups to refer to either 
coral colony (N12 vs L5), or polyp type (tip vs side).
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2.3 | Whole genome bisulphite sequencing library 
preparation

Whole genome bisulphite sequencing (WGBS) libraries were pre-
pared using a Zymo Pico Methyl-Seq Library Prep Kit (Cat No. 
D5455). Each library was prepared from 100 ng of genomic DNA. 
For half the samples, we included 0.05  ng (0.05%) of λ phage 
standard DNA to estimate conversion efficiency. The final sam-
ple size was eight (two genotypes, two tissues, two replicates per; 
Table 1). The eight libraries were sequenced across four lanes on a 
Hiseq 2,500 for single-end 50 bp reads at The University of Texas 
Austin Genome Sequencing and Analysis Facility (GSAF). Single-
end sequencing was recommended in the Zymo Pico Methyl-Seq 
manual.

2.4 | mdRAD library preparation

mdRAD libraries were prepared using a protocol based on Wang 
et al. (2015). Importantly, Wang et al. (2015) selected small sized 
fragments that had been cut on either end by the enzyme due to 
palindromic recognition sequences. In our hands, the yield of the 
palindrome-derived product was very low, so we instead sequenced 
any ligated fragments in the 170–700 bp range. We also used dif-
ferent oligonucleotide sequences, designed for similarity to those 
used in the current 2bRAD protocol (Table S1) (Dixon et al., 2015; 
Matz et  al.,  2018; https://github.com/z0on/2bRAD_denovo). A 
detailed version of the protocol used is included as Appendix S2. 
We prepared libraries using two different methylation-dependent 
endonucleases, FspE1 (NEB cat no. R0662S) and MspJ1 (NEB cat 
no. R0661S). For each library, we used 100  ng of genomic DNA 
as input. Digests were prepared with 0.4 units of endonuclease 
and the recommended amounts of enzyme activator solution and 
Cutsmart buffer (final volume = 15.0 µl) and incubated at 37°C for 
4 hr. We then heated the digests for 20 min to deactivate the en-
zymes (at 80°C for FspE1 and 65°C for MspJ1). All ligations were 
prepared with 0.2 µM mdRAD 5ILL adapter, 0.2 µM of the mdRAD 
3ILLBC1 adapter, 800 units of T4 ligase, 1mM ATP (included in 
ligase buffer), and 10  µl of digested DNA (final volume  =  20  µl). 
Ligations were incubated at 4°C overnight (approximately 12 hr). 
Ligase was then heat-inactivated by incubation at 65°C for 30 min. 

Sequencing adapters and multiplex barcodes were then appended 
by PCR. Each PCR was prepared with 0.3 mM each dNTP, 0.15 µM 
of the appropriate ILL_Un primer, 0.15  µM of the appropriate 
ILL_BC primer, 0.2 µM of the p5 primer, 0.2 µM of the p7 primer, 
1x Titantium taq buffer, 1x Titantium taq polymerase, and 7  µl 
of ligation (final volume  =  20  µl) (Table  S1). At this point in the 
protocol, all samples were distinguishable by the dual barcoding 
scheme. The concentration of each PCR product was quantified 
using PicoGreen dsDNA Assay Kit (Cat No. P7589). Based on these 
concentrations, 200 ng of each product was combined into a final 
pool with approximate concentration of 32 ng/µl. A portion of this 
pool was then size selected for 170–700 bp fragments using 2% 
agarose gel and purified using a QIAquick gel Extraction kit (Cat 
No. 28,704). After gel purification, the pool was sequenced with 
a single run on a NextSeq 500 for paired-end 75 bp reads at the 
University of Texas Genome Sequencing and Analysis Facility. The 
final number of libraries included in the pool was 24 (two geno-
types, two tissues, two different restriction endonucleases, three 
replicates per combination; Table  1). As this methylation assay 
depends on fold coverage to infer methylation levels, single-end 
reads are a more cost-effective approach. We opted for paired-
end reads in this case only to ensure proper product structure for 
benchmarking purposes.

2.5 | MBD-seq library preparation

MBD-seq libraries were prepared using a Diagenode MethylCap kit 
(Cat No. C02020010) as described previously (Dixon et  al.,  2016, 
2018). Briefly, genomic DNA was sheared to a target size of 300–
500  bp. Concentrations based on PicoGreen dsDNA assay on 
genomic DNA were assumed not to have changed during shearing. 
Because limited genomic DNA remained, we prepared these librar-
ies from pools of genomic DNA for each genotype-tissue pair. Also 
due to limited genomic DNA, the two libraries for N12 tips were pre-
pared using only 0.565 μg as input. For the remaining libraries, half 
were prepared with 1  μg of input and the other half from 1.5  μg. 
During capture of methylated DNA, we retained the flow-through 
for sequencing, which we refer to as the unbound fraction. Captured 
methylated fragments were eluted from capture beads in one sin-
gle total elution using high elution buffer. The final sample size was 

TA B L E  1   Sample and library information

Assay
Treatment 
groups Replicates Samples

Library 
types

Total 
libraries Raw reads

Final aligned 
reads

WGBSa  4 2 8 1 8 9.54E + 08 3.73E + 08

MBD-seqb  4 2 8 2c  16 4.88E + 08 3.94E + 08

mdRAD 4 3 12 2d  24 2.85E + 08 1.23E + 08

aZymo Picomethyl Kit. 
bDiagenode Methylcap Kit. 
cBoth captured and unbound fractions were sequenced. 
dSeparate libraries prepared with Fspe1 and Mspj1. 

https://github.com/z0on/2bRAD_denovo
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eight (two genotypes, two tissues, two replicates per; Table 1). After 
capture, fragment size was assessed using 1.5% agarose gels. The 
captured and unbound fractions both ranged between 200 and 
1,000  bp. These fragments were submitted to the University of 
Texas Genome Sequencing and Analysis Facility. Here the fragments 
were further sheared to a target size of 400 bp. This additional shear-
ing was done to ensure appropriate library sizes of 300–500 bp for 
sequencing. Libraries were prepared with a NEBNext Ultra II DNA 
Library Preparation Kit (Cat No. E7645). Libraries were sequenced 
with a single run on a NextSeq 500 for single-end 75 bp reads.

2.6 | Whole genome bisulphite sequencing 
data processing

Raw reads were trimmed and quality filtered using cutadapt, si-
multaneously trimming low-quality bases from the 3’ end (-q 20) 
and removing reads below 30 bp in length (-m 30) (Martin, 2011). 
Trimmed reads were mapped to the A. millepora reference genome 
(Fuller et al., 2020) using Bismark v0.17.0 (Krueger & Andrews, 2011) 
with adjusted mapping parameters (--score_min L,0,-0.6) in --non_
directional mode as indicated in the Pico Methyl-Seq Library Prep 
Kit manual. Methylation levels were extracted from the alignments 
using bismark_methylation_extractor with the --merge_non_CpG, 
--comprehensive, and --cytosine_report arguments. At this point, 
CpG sites within the lambda DNA chromosome and the mitochon-
drial chromosome were set aside to assess conversion efficiency. 
Conversion efficiencies were estimated as the ratio of “unmethyl-
ated” fold coverage (converted by bisulphite treatment) to all fold 
coverage summed across CpG sites in the lambda DNA and the host 
mitochondrial reference sequences. Detailed steps used to process 
the WGBS reads are available on the git repository (https://github.
com/Groves-Dixon-Matz-labor​atory/​bench​marki​ng_coral_methy​
lation).

2.7 | MBD-seq data processing

Raw reads were trimmed and quality filtered using cutadapt si-
multaneously trimming low-quality bases from the 3’ end (-q 20) 
and removing reads below 30 bp in length (-m 30) (Martin, 2011). 
Trimmed reads were mapped to the A. millepora reference ge-
nome (Fuller et al., 2020) with bowtie2 using the --local argument 
(Langmead & Salzberg, 2012). Alignments were sorted and indexed 
using samtools (Li et al., 2009), and PCR duplicates were removed 
using MarkDuplicates from Picard Toolkit (Broad Institute, 2019). 
Fold coverage for different regions (e.g., gene boundaries, exon 
boundaries, 1 Kb windows, etc.) was counted using multicov from 
BEDTools (Quinlan & Hall, 2010). Detailed steps used to process 
the MBD-seq reads are available on the git repository (https://
github.com/Groves-Dixon-Matz-labor​atory/​bench​marki​ng_coral_
methy​lation).

2.8 | mdRAD data processing

All mdRAD reads were expected to contain NNRWCC as the first 
six bases of the forward read, and ACAC as the first four bases 
of the reverse read (Table S1). The degenerate NNRW sequence 
in the forward read allows for discrimination of PCR duplicates, 
as uniquely ligated digestion products are unlikely (1/64) to bear 
identical sequences for these four bases. With this in mind, we 
used a custom python script to filter out any reads for which the 
first 20 bp was duplicated in a previous read (i.e., a likely PCR dupli-
cate). At the same time, all paired end reads were filtered to retain 
only those with the expected NNRWCC beginning to the forward 
read and ACAC in the reverse read. These nontemplate bases were 
trimmed, along with adapters and low-quality bases using cuta-
dapt (Martin, 2011). Trimmed reads were mapped to the A. mille-
pora reference genome (Fuller et al., 2020) with bowtie2 using the 
--local argument (Langmead & Salzberg, 2012). Alignments were 
sorted and indexed using samtools (Li et  al.,  2009). Fold cover-
age for different region types was counted using multicov from 
BEDTools (Quinlan & Hall, 2010). Detailed steps used to process 
the mdRAD reads are available on the git repository (https://
github.com/Groves-Dixon-Matz-labor​atory/​bench​marki​ng_coral_
methy​lation).

2.9 | Designating of regions of interest

Statistical analyses for all three assays were based on windows 
recorded in.bed files. These included genes, exons, upstream se-
quences, and tiled windows of varying sizes, as well as different 
types of repetitive elements. Region boundaries were identified from 
GFF files included with the A. millepora reference genome (Fuller 
et al., 2020). Intergenic and intronic regions were identified based 
on gene and exon boundaries using the BEDTools suite (Quinlan & 
Hall,  2010). Upstream sequences included 1  Kb upstream of each 
gene. These were intended to approximate promoter regions. Tiled 
windows were also generated using BEDTools. General statistics for 
these regions such as length, nucleotide content, and the number 
of CpGs, were extracted from the reference genome with a custom 
python script using SeqIO from Biopython (Cock et  al.,  2009). All 
downstream analyses of methylation level and differences between 
groups were based on these regions.

2.10 | Whole genome bisulphite statistical analysis

Statistical analyses of WGBS data were conducted on the.cov files 
output from Bismark. Analysis was conducted only on CpG sites. 
Methylation level was calculated in several ways. The simplest met-
ric was the overall fractional methylation, calculated as the number 
of methylated counts divided by all counts summed across CpGs 
within the region.

https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
https://github.com/Groves-Dixon-Matz-laboratory/benchmarking_coral_methylation
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We report this as the % methylation on the log2 scale through-
out the manuscript (e.g., Figure 1a). We calculated a similar met-
ric using generalized logistic regression. Here the estimate of a 
region's methylation level was the sum of the intercept and the 
region's coefficient for a model of the probability of methylation 
given all methylated and unmethylated counts. We also report 
the frequency of methylated CpGs, calculated as the number of 
methylated CpG sites divided by the total number of CpG sites 
within a region. We classified a CpG as methylated when the num-
ber of methylated counts was significantly greater than the null 
expectation with 0.01 error rate (binomial test; p-value  <  .05). 
We also calculated the ratio of methylated CpGs to the total 
length (bp).

Statistical analysis of differences in methylation between treat-
ment groups (tissue type or colony) was done with the MethylKit 
package (Akalin et al., 2012). Filtering parameters supplied to the fil-
terByCoverage() function were lo.count = 5, and hi.perc = 99.9. The 
function methylKit::unite() was run using min.per.group = 4, so that 
only sites with data from all samples in each treatment group passed. 
Methylation counts for particular regions were isolated using the ap-
propriate.bed file, the Granges() function from the GenomicRanges 
package (Lawrence et  al.,  2013), and the regionCounts() function 
from MethylKit.

2.11 | MBD-seq statistical analysis

Statistical analyses of MBD-seq data were conducted on the fold 
coverages output from BEDTools multicov. Methylation level was 
calculated based on the difference in fold coverage between the 
captured and unbound fractions taken during library preparation. 
We quantified this using DESeq2 as the log2 fold change between 
the two fractions from a model including colony and polyp type 
as covariates (Love et al., 2014). Following previous studies (Dixon 
et al., 2016, 2018), we refer to this value as the MBD-score. We 
also calculated methylation level based on the fragments per kilo-
base per million reads (FPKM) from the captured fraction averaged 
across all samples. Differential methylation was also assessed using 
DESeq2. This was done in two ways, one using both the captured 
and unbound fractions, the other using only the captured fraction. 
Using both the captured and unbound fractions, the effect of treat-
ment group was assessed as the interaction between treatment 
group and fraction. In other words, we assessed the effect of treat-
ment group on the difference between the captured and unbound 
fractions. To assess methylation differences without using the un-
bound fraction, we modelled the counts from only the captured 
fraction using both treatment groups as predictors (polyp type and 
colony) then computed the contrasting log2 fold changes for each 

F I G U R E  1   Correlation of gbM level estimates from each assay. (a–c) Histograms of gbM level. (a) WGBS. Axis is on the log2 scale. (b) 
MBD-seq. MBD-score refers to the log2 fold difference between the captured (methylated) and unbound (unmethylated) fractions from 
the library preparation. (c) mdRAD. Plot shows log2 FPKM from combined reads from both enzymes. (d–e) Scatterplots of methylation level 
estimates from each assay. Pearson correlations are indicated in the top left
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treatment group (tips vs sides and L5 vs N12). DESeq tests were 
run using fitType = “local” and significance was assessed using 
Wald tests.

2.12 | mdRAD statistical analysis

Statistical analyses of mdRAD data were conducted on the fold 
coverages output from BEDTools multicov. Methylation level was 
calculated as FPKM averaged across all samples, and as the frag-
ments per recognition site per million reads. Methylation differ-
ences were calculated using DESeq2 comparing fold coverage 
between treatment groups while controlling for the restriction en-
zyme used and the other treatment group. DESeq tests were run 
using fitType = “local” and significance was assessed using Wald 
tests.

2.13 | Simulating reduced fold coverage

To assess the importance of fold coverage for methylation statis-
tics, we simulated reduced fold coverages for each of the three as-
says. For MBD-seq and mdRAD, this was done by sampling genes 
with replacement weighted by the genes’ proportion of total read 
counts in the original data set. This was done iteratively with increas-
ingly lower sample sizes, simulating lower total counts. To clarify, to 
simulate read reductions for 28,188 genes for each sample, a vector 
of weights was generated by dividing each gene's fold coverage by 
the total for the sample. A vector of gene indices ranging from 1 to 
28,188 was then randomly sampled with replacement, with prob-
abilities set by the weight vector. The number of times each value 
was sampled was then totalled to give each genes’ count in the simu-
lated fold reduction. For WGBS, the trimmed fastq files were ran-
domly sampled without replacement and all processing steps were 
repeated as indicated above.

2.14 | Gene ontology enrichment

Enrichment of gene ontology terms among genes not covered in the 
differential expression analysis was tested using Fisher's exact tests 
implemented using a custom R script (Wright et al., 2015; https://
github.com/z0on/GO_MWU).

2.15 | Statistical reporting

Unless otherwise noted, we report significant results as those 
with false discovery corrected p-values less than 0.1 (FDR  <  0.1) 
(Benjamini & Hochberg, 1995). Correlations are reported as Pearson 
correlations. All scripts for data processing and analysis in this study 
are available on GitHub: (https://github.com/Groves-Dixon-Matz-
labor​atory/​bench​marki​ng_coral_methy​lation).

3  | RESULTS

3.1 | WGBS sequencing results

Sequencing the WGBS libraries produced 954 million single-end 
reads across eight samples (two from each colony-tissue type pair; 
median  =  120 million per sample). Trimming and quality filtering 
reduced the median to 119 million per sample. Mapping efficiency 
was 40% on average, with a median of 47 million mapped reads per 
sample (5.88x genomic coverage). Conversion efficiency averaged 
98.5 ± SE 0.05% based on spiked in lambda DNA and 98.0 ± SE 0.10% 
based on mitochondrial DNA. The overall percentage of mapped 
reads was 39% of raw reads. The final fold coverage achieved for 
our WGBS libraries was below that recommended by the Zymo Pico 
Methyl-Seq Library Prep Kit Manual (D5455). Based on the cov files 
output by Bismark, mean per-sample CpG coverage ranged 5.16 to 
6.22 (overall mean = 5.58 ± 0.001 SE). Hence, our WGBS results are 
based on very low coverage and should be considered largely for 
corroboration of the other two assays, rather than representative of 
the recommended WGBS methodology.

3.2 | MBD-seq sequencing results

Sequencing the MBD-seq libraries produced a total of 488 million 
single-end reads. These were divided across eight samples each with 
two libraries (one captured and one unbound). Median read count 
for the captured and unbound libraries was 27.4 and 33.1 million, 
respectively. Trimming and quality filtering removed 0.1% of reads. 
Mapping efficiency was 92% on average, with medians of 24.9 and 
30.8 million reads for captured and unbound libraries respectively. 
PCR duplication rate was 12% on average, for final medians of 21.8 
and 27.2 million mapped reads per sample for the captured and un-
bound fractions, respectively. The final percentage of countable 
reads (passing all filters and properly mapped) was 78% of raw reads 
for captured libraries and 82% for unbound libraries.

3.3 | mdRAD sequencing results

Sequencing the mdRAD libraries produced a total of 284 million 
paired-end reads across 24 libraries (three replicates for each of 
the four colony-polyp type combinations each prepared with two 
different restriction enzymes). These were filtered to include only 
reads with the appropriate adapter sequences found in both the 
forward and reverse directions (~71% of reads) and to remove PCR 
duplicates based on degenerate sequences incorporated into the 
forward read (average 13.5% duplication rate). On average 60% of 
raw reads passed both these filters (172 million total passing reads). 
Trimming and quality filtering further reduced this by 0.2%, for 74 
million reads for Fspe1 libraries (median  =  5.9 million per sample) 
and 98.5 million for the Mspj1 libraries (median  =  7.3 million per 
sample). Properly paired mapping efficiency averaged 77% and 66% 
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for Fspe1 and Mspj1 libraries respectively, giving final median read 
counts of 4.6 and 4.9 million reads per library. The final percentage 
of raw reads that passed all filters and properly mapped was thus 
44% for Fspe1 and 42% for MspJ1.

3.4 | Estimating methylation level

Measurements of absolute levels of gbM were consistent across as-
says. Each assay identified a bimodal distribution of gbM (Figure 1a–
c). Pearson correlations between assays were all greater than 
0.8 (Figure  1d–f). All three assays correlated negatively with the 
CpGo/e, with the strongest correlation found for WGBS (Figure S1). 
Correlations similar to those for gbM were found for exons (Figure 
S2), 1 Kb windows (Figure S3), and upstream regions of coding se-
quences (1 Kb upstream from the gene boundary) (Figure S4).

The measures of gbM level shown in Figure 1a–c were selected 
based on their simplicity and correlation between assays. Additional 
metrics of gbM level for WGBS, MBD-seq, and mdRAD are shown 
in Figures S5, S6 and S7. For WGBS, these included estimates based 
on logistic regression, the ratio of methylated CpGs to all CpGs, and 
the ratio of methylated CpGs to gene length. Of these, all except the 

ratio of methylated CpGs to gene length correlated roughly equiva-
lently with the other two assays (Figure S5). For MBD-seq, metrics 
that did not include the unbound fraction (FPKM and a similar metric 
based on the number of CpGs) correlated poorly with other assays 
(Figure S6). Hence sequencing the unbound fraction is important for 
measuring absolute methylation level with MBD-seq. For mdRAD, 
the two restriction enzymes produced nearly equivalent results. 
mdRAD FPKM was more consistent with other assays than a similar 
metric based on the number of recognition sites (Figure S7).

3.5 | Methylation differences between groups

Estimates of differential methylation between coral colonies were 
concordant between assays, but considerably less so than methyla-
tion level. Each assay identified extensive differential methylation 
between the two colonies (Figure 2a–c). The number of significant 
differentially methylated genes (DMGs) detected with each assay re-
flected the sample sizes used, rather than overall sequencing effort 
(Table 1). mdRAD, with 24 libraries, identified the most, with 12,244 
DMGs. MBD-seq, with eight pairs of captured and flow-through li-
braries, identified the second most (7,268 DMGs). WGBS, with eight 

F I G U R E  2   Correlation of gbM difference estimates between two coral colonies (genotypes). (a–c) Volcano plots illustrating differential 
gbM for the indicated assay. Red points indicate significant genes (FDR < 0.1). The number of biological samples, libraries, total number of 
filtered and aligned reads, and the number of significant and nonsignificant genes is given in the subtitle for each panel. (d–f) Scatterplots 
of gbM difference estimates for the indicated assays. Pearson correlations are indicated in the top left [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  471DIXON and MATZ

libraries, detected 4,395 DMGs. The overlap between these sets 
of DMGs is shown in Figure 3. Although it only used approximately 
1/10th of the sequencing effort, a reduced mdRAD data set using 
only eight libraries generated with FspE1 still identified 7,407 DMGs 
(Figure S8).

Despite variations between assays and statistical methods, 
estimates of methylation differences were positively correlated 
(Figure 2d–f). MBD-seq correlated with the other two assays simi-
larly (Pearson correlation = 0.39 and 0.41). mdRAD and WGBS were 
weakly correlated (Pearson correlation  =  0.26). Correlations were 
stronger (0.31–0.55) when only methylated genes (> 3.1% methyl-
ation based on WGBS) were considered. Similar results were found 
for differences between exons (Figure S9), 1  Kb windows (Figure 
S10), and upstream regions of coding sequences (Figure S11). Hence, 
estimates of methylation differences between colonies (genotypes) 
were noisy, but reproducible across assays.

In contrast to differential methylation between colonies, dif-
ferences between polyp types were weak, and not reproducible 
across assays. The number of significant differences was reversed 
compared to the colony comparison, with the most (169 DMGs) de-
tected by WGBS, the second (12 DMGs) by MBD-seq, and the least 
(1 DMG) by mdRAD (Figure S12). There was no overlap in significant 
calls between assays. Difference estimates based on WGBS showed 
no correlation with the other two assays (Pearson correlation be-
tween 0.01 and 0.02). MBD-seq and mdRAD correlated weakly 0.2 
(Figure S12).

The methods also varied in their coverage for differential gbM 
(the number of genes for which differences were estimated). This 
is due to differences in sequencing effort and filtering parameters 
for each assay, and it should be noted that our WGBS libraries were 
shallowly sequenced (see Methods). The types of genes that were 
filtered from the WGBS differential methylation analysis were non-
random with regard to gene function. Enriched GO terms for genes 
not covered by our WGBS data set are shown in (Figure S13). These 
included numerous terms for biological processes associated with 
immune response. No GO terms were significant for genes missing 
from the MBD-seq or mdRAD data sets.

3.6 | Spatial precision

Correlations between assays were generally robust across window 
sizes. For each assay, we calculated methylation level, as well as 
methylation differences between the two colonies for tiled windows 
of varying sizes: (100 bp, 500 bp, 1 Kb, 5 Kb, and 10 Kb). Correlations 
between assays were generally consistent across window sizes, both 
for methylation level and methylation differences (Figure 4). As with 
gbM, correlations for methylation level were much stronger (2–4-
fold) than those for methylation differences. Hence, for the coral 
genome, MBD-seq and mdRAD reproducibly agree with the single-
nucleotide measures from WGBS even across small regions.

To further characterize the assays, we examined their methyla-
tion level estimates for additional genomic regions with varying func-
tion and length, including introns, 5’ UTRs, 3’ UTRs, and intergenic 
regions, as well as repetitive elements including long interspersed 
nuclear elements (LINE), short interspersed nuclear elements (SINE), 
long tandem repeats (LTR), rolling circle repeats (RC), low complex-
ity repeats, and simple repeats. Estimates of methylation levels for 
repetitive elements indicated that like coding genes, they tended 
to comprise mixtures of methylated and unmethylated elements 
(Figure S14). LTR and RC repeats appeared to have particularly high 
rates of methylation. The correlation of methylation level estimates 
between assays was lower for repetitive elements than for gene 
bodies, with a maximum correlation of 0.69 between MBD-seq and 
WGBS for LTRs, and lowest of 0.44 between mdRAD and WGBS for 
RC repeats (Figure S15). To further illustrate differences in coverage 
between our data sets, the proportion of total annotated elements 
passing filters for each assay are shown in Figure S16.

3.7 | Effect of fold coverage on detecting 
methylation differences

Given the importance of reducing sequencing costs for ecological 
epigenetics, we sought to evaluate the importance of sequencing ef-
fort for each assay in estimating methylation statistics. To do this, 
we simulated reduced sequencing effort by randomly resampling 
fold coverage from the data sets. We then recalculated estimates 
of methylation level and methylation differences from the reduced 

F I G U R E  3   Venn diagram showing overlap of differentially 
methylated genes detected with each assay. Overlap in significant 
genes was statistically significant for each pair (Fisher's exact test; 
p < 1 x 10–6) [Colour figure can be viewed at wileyonlinelibrary.com]
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sets. As we detected no reproducible differences between polyp 
types (Figure S12), we focused on differences between colonies 
(genotype).

For estimates of absolute levels of gbM, fold coverage appeared 
to matter very little. We found that correlation between assays 
plateaued between 0.75 and 0.80 with approximately 20% of the 
original sequencing effort (Figure S17) Although lower, correlation 
of gbM differences also plateaued with relatively little sequencing 
effort (Figure 5a–c). Hence correlation between assays was sensitive 
only to severe reductions in fold coverage. Moreover, increasing fold 
coverage appeared unlikely to improve correlations between assays.

Detecting significant DMGs in contrast, was strongly dependent 
on fold coverage. For the sake of comparability, here we reduced 
the mdRAD data set to just eight libraries prepared with the FspE1 
enzyme. To illustrate the importance of fold coverage for statistical 
significance, we made the simplifying assumption that a gene identi-
fied as differentially methylated by any two of the three assays was 
a “true” DMG. In other words, we assumed that the genes indicated 
by all overlapping regions of the Venn diagram shown in Figure  3 
were “true” DMGs. We then plotted the proportion of these “true” 
DMGs that were also significant for a given read reduction (“any 2” 
trace in Figure  5d–f). This proportion provides an estimate of the 
assay's sensitivity at a given fold coverage. For a more stringent test 
of sensitivity, we also computed this value based on DMGs detected 
in each of the alternative assays (“alt. 2” in Figure 5d–f). For instance, 
for mdRAD, the DMGs for the alternative two assays are those iden-
tified as significant by both WGBS and MBD-seq. The “alt. 2” line, 
in this case, traces the proportion of this group of DMGs that was 
also significant for the indicated mdRAD fold coverage. Based on 
this analysis, it appeared that increasing sequencing effort would 
have returned many more DMGs for WGBS, somewhat more for 

MBD-seq, and relatively few more for mdRAD. We also assessed 
how often DMG calls by each assay were corroborated by the other 
assays. Here we computed comparative precision as the proportion 
of DMGs from a given reduction that was also significant for at least 
two of the assays’ full data sets (“any 2” in Figure 5g–I). For greater 
stringency, this was also computed based on significance in the two 
alternative assays (“alt 2” in Figure 5g–I). Corroboration rates were 
slightly higher for WGBS DMGs, but generally similar for all three 
assays. When we repeated the analysis using the full mdRAD data 
set (which still used less total sequencing; Table 1), mdRAD detected 
many more corroborated differences, with only slightly lower com-
parative precision (Figure S18). Costs for library preparation, and 
suggested targets for raw sequencing effort for each assay are in-
cluded in Tables S2 and S3. In summary, mdRAD can identify re-
producible differences in methylation with sensitivity and precision 
comparable to MBD-seq and a shallowly sequenced WGBS data set 
with relatively little fold coverage.

4  | DISCUSSION

Here, we present a benchmarking study of methods for assay-
ing DNA methylation for ecological epigenetics in a marine inver-
tebrate. We found that all three assays measure methylation level 
consistently, with a minimum correlation of 0.8 for gbM (Figure 1). 
Analysis of differential methylation was less consistent, but still in-
dicated reproducible differences between coral colonies (Figure 2). 
Surprisingly, we found no such reproducible differences between 
polyp types (branch tips compared to branch sides; Figure S12). It 
is interesting to note that in this case, WGBS identified 169 DMGs, 
none of which were detected by the other assays. This may reflect 

F I G U R E  4   Effect of window size on correlations between assays. Each panel indicates comparisons for one of the assays. Colours 
indicate the comparison assay. Solid lines indicate correlation of estimates of methylation level for the windows. Dotted lines indicate 
correlation for estimates of differential methylation between coral colonies [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  5   Effect of simulated read reductions on estimates of methylation differences between coral colonies. Columns are assigned to 
the three assays. Rows are assigned to statistics measuring agreement between assays. Each data point represents a simulated reduction in 
fold coverage. (a–c) Pearson correlation between assays as fold coverage is reduced. (d–f) Sensitivity of each assay in detecting significant 
differences (FDR < 0.1) detected by other assays. For each reduction in fold coverage, comparative sensitivity is computed as the number 
of significant genes shared with the comparison divided the total significant genes for the comparison. Comparisons include any 2: genes 
that were significant in any two assays; alt. 2: genes that were significant for both the alternative assays (g–I) Precision of each assay in 
detecting only significant differences (FDR < 0.1) also detected by other assays. For each reduction in fold coverage, comparative precision 
is computed as the number of significant genes shared with the comparison divided by the total significant genes for the fold reduction. 
Read counts on the X-axis refer to the total number of reads included in the final filtered alignment file, hence mapping efficiencies and PCR 
duplication rates should be accounted for when deciding on total sequencing effort [Colour figure can be viewed at wileyonlinelibrary.com]
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greater sensitivity of WGBS, even with the shallowly sequenced 
libraries used here. Indeed, a previous study applying WGBS with 
greater fold coverage detected substantial variation in methylation 
between oral and aboral tissue from the coral Stylophora pistillata 
(Liew et al., 2018). An alternative explanation is that there was little 
differential methylation between our polyp type samples, and the 
differences detected by our WGBS library were false positives.

Simulating reduced sequencing effort for each assay showed 
that fold coverage is most important in the context of statistical sig-
nificance. While the number of corroborated DMGs dropped steeply 
with fold coverage (Figure 5d–f), correlations between assays were 
relatively stable (Figure 5a–c; Figure S18). This suggests that add-
ing a second assay to a methylomic experiment can provide valuable 
corroboration even with relatively little sequencing effort. Based on 
these results, we suggest an experimental strategy that uses high 
fold coverage for one assay to obtain statistical significance and 
low coverage from another assay for corroboration. For instance, 
mdRAD could be used to sequence a large number of individuals 
to identify significant differences, with WGBS, MBD-seq, or both 
applied with relatively lower coverage for corroboration.

There are additional approaches for assessing DNA methylation 
that were not included in this study. For instance, reduced repre-
sentation bisulphite sequencing (RRBS) is an approach for applying 
bisulphite sequencing to a subset of the genome (Gu et al., 2011). 
Briefly, genomic DNA is digested with a methylation insensitive 
restriction enzyme such as MspI, providing short fragments based 
on proximity to the enzyme's recognition site. Bisulphite conver-
sion and sequencing of these fragments allows for quantitative, 
single-base resolution assessment of methylation levels. The selec-
tive process focuses sequencing effort on a subset of the genome, 
sacrificing the breadth of sites examined for greater fold coverage 
within the selected regions (Gu et  al.,  2011). A specific variant of 
RRBS is bsRADseq, which includes methodology for de novo analy-
sis without a reference genome (Trucchi et al., 2016). As mdRAD also 
works through enzymatic selection, RRBS would probably provide 
comparable results regarding spatial precision (Figure  4), with the 
advantage of single-base resolution and quantitative measurement. 
Drawbacks to RRBS are increased complexity of library preparation 
and potentially decreased mapping efficiency (as observed with our 
WGBS data). Another option is MeDIP-seq, which uses antimethyl-
cytosine antibodies to enrich for methylated DNA (Jacinto, Ballestar, 
& Esteller, 2008). This method is in principle very similar to MBD-seq, 
and the two methods have been shown previously to provide similar 
results (Harris et al., 2010). As calling SNPs from bisulphite data is 
problematic (Gao et al., 2015), the value of acquiring SNP data from 
the same set of NGS reads is also worth considering when selecting 
between bisulphite-based methods, such as RRBS and WGBS, and 
enrichment methods such as ME-DIP, MBD-seq and mdRAD.

The importance of spatial precision for a given study is another 
important consideration. In this study, we gave special attention to 
gbM, as it is the most common pattern of methylation described in 
invertebrates (Zemach & Zilberman, 2010). In some cases, this may 
reflect the spatial level at which variation in methylation patterns is 

functionally relevant. For instance, evidence from plants indicates 
that methylation is evolutionarily conserved at the level of genes 
rather than individual sites (Takuno et al., 2016). Consistent with this 
hypothesis, Vidalis et al. (2016) found no evidence of selection at the 
level of single methylated sites. Alternatively, cases exist in mamma-
lian systems where methylation status of single sites has functional 
importance (Nile et al., 2008; Zhang et al., 2010). Here, WGBS, or 
targeted bisulphite sequencing methods would be necessary. Hence 
an important consideration when selecting an assay is the genomic 
scale at which variation in methylation is expected to be ecologically 
relevant.

We have attempted to demonstrate the usefulness of both MBD-
seq and mdRAD. These methods however, still represent a tradeoff 
of quantitative and spatial precision in exchange for reduced library 
preparation and sequencing costs. We have further suggested that 
an ideal strategy should include more than one methodology. To aid 
in evaluating these tradeoffs, we have included tables of the costs 
incurred for library preparation (Table S2) and suggested sequenc-
ing effort (Table S3) for each assay in this study. In evaluating the 
sequencing costs, we note that our WGBS libraries were underse-
quenced relative to the amount suggested in the Zymo Pico Methyl-
Seq Library Prep Kit Manual (D5455) and as inferred from the 
sensitivity traces in Figure 5. While we cannot tell for certain how 
the number of significant genes detected would have changed with 
more WGBS sequencing effort, the steepness of the slopes in these 
curves is suggestive that more sequencing would have identified 
many more significant genes. We hope these data (Tables S2 and S3; 
and Figure 5) will be helpful in considering the tradeoffs between 
assays when developing an ecological methylation experiment.

To conclude, MBD-seq and mdRAD are cost-effective alterna-
tives to WGBS. They provide consistent estimates of methylation 
level and are sensitive to methylation differences at relatively low 
library preparation and sequencing costs (Tables S2 and S3). The 
considerably lower sequencing effort required for mdRAD makes it 
particularly promising for the large sample sizes needed for ecolog-
ical studies.
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