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Fantastic Beasts and How To Seguence
Them: Ecological Genomics for Obscure

Model Organisms

Mikhail V. Matz'*

The application of genomic approaches to ‘obscure model organisms’ (OMOs),
meaning species with no prior genomic resources, enables increasingly sophis-
ticated studies of the genomic basis of evolution, acclimatization, and adapta-
tioninreal ecological contexts. | consider here ecological questions that can be
addressed using OMOs, and indicate optimal sequencing and data-handling
solutions for each case. With this | hope to promote the diversity of OMO-based
projects that would capitalize on the peculiarities of the natural history of OMOs
and could feasibly be completed within the scope of a single PhD thesis.

Why Sequence Strange Creatures?

As sequencing methods continue to diversify and their costs continue to drop [1], full-scale
genomic analysis is becoming feasible for an increasingly broad range of study systems and
biological questions, far beyond what was accessible using well-established genomic models.
This review considers OMOs — organisms with no pre-existing genomic resources. Several
recent reviews [2-4] have described the range of methods applicable to ‘non-model organisms’
in general. | identify here optimal approaches that would allow valuable insights to be gained
within the scope of a single PhD project. This requirement for short-term return justifies the use
of term ‘OMO’ instead of ‘non-model organism’: while the latter is basically a model organism in
the making, with the hope of eventually initiating many diverse projects, the former might be of
interest for only a single project capitalizing on one specific aspect of the natural history of the
OMO. For example, Death Valley pupfishes were studied because they have the smallest
species range on earth [5], deep-sea mussels were sequenced to understand adaptation of
animals to chemosynthetic environments [6], and in the saker falcon from the Qinghai-Tibetian
Plateau both DNA polymorphisms and gene expression were examined to investigate adap-
tations of a predatory bird to high altitude [7].

Generally, ecological reasons to sequence OMOs include population biology, genomic targets
of selection and introgression during adaptation to diverse environments, gene regulation
underlying acclimatization and adaptation, and ecological role of epigenetics (Table 1). There is
one more reason — phylogenomics — for which | refer the reader to recent reviews [8,9] to keep
the focus on ecology.

Population biology issues include population structure, migration rates, history of population
splits, and population size changes. These are the obvious reasons for OMO sequencing if the
goal of the study is the management and conservation of an OMO (e.g., [10-12]). In addition,
such studies can elucidate broadly relevant population biology scenarios not represented by
established model organisms. Examples include enormous fecundity and dispersal potential of
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Genotyping applications are under-
going a shift from high-coverage,
reduced representation sequencing
to low-coverage, whole-genome
sequencing.

Approaches based on full allele fre-
quency spectrum (AFS) to study popu-
lation structure, migration rates, and
historical population sizes are gaining
popularity.

There has been a rise in functional
genomics studies of acclimatization
and adaptation, powered by cost-effi-
cient methods for genome-wide gene
expression and DNA methylation
analysis.

‘Third-generation’ sequencing tech-
nologies (PacBio and Oxford Nano-
pore Technologies) have been
proven to produce high-quality gen-
ome and transcriptome references,
and to directly detect epigenetically
modified DNA bases.
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Table 1. Optimal Sequencing Methods and Reference Sequence Requirements

Aim of study Optimal sequencing Minimal reference Optimal reference
method
Population subdivision, RAD None Draft genome of a sister

migration rates, population
size changes through time

species

Genes under selection Exome sequencing De novo transcriptome Well-annotated® genome

Selection signatures and
genomic regions underlying
ecological speciation

Low-coverage WGS Draft long reads-based High-contiguity® genome

genome

Molecular basis of
acclimatization, adaptation

Tag-based gene
expression analysis

De novo transcriptome High-contiguity

transcriptome

Genome-wide patterns of None
DNA methylation (many

samples)

RRBS-seq, methylRAD Well-annotated genome

DNA methylation of specific
genes (many samples)

MBD-seq, MeDip Draft genome (vertebrates),
de novo transcriptome

(invertebrates, plants)

Well-annotated® genome
(vertebrates) or high-
contiguity® transcriptome
(invertebrates, plants)

DNA methylation of specific
bases (few samples)

ONT nanopore
sequencing

None (de novo genome
assembly form the same
reads)

Well-annotated genome

#Well-annotated: resolving all or nearly all paralogous gene copies.

PHigh-contiguity reference: genome or transcriptome containing the least amount of fragmentation. For a genome this
implies Mb-scale contigs or scaffolds, and for a transcriptome in which >90% of protein-coding transcripts contain >90%
of the coding sequence of the encoded protein.

marine species, life cycles featuring alternating sexual and asexual generations, parasitic or
symbiotic relationships, extreme longevity, invasiveness, and many others.

Adaptation-related projects aiming to detect genomic signatures of selection, or so-called
genome scanning (see Glossary) studies, have greatly proliferated in the past decade and
their methodologies have been highlighted in several recent reviews [13-15], including an
overview of genomic resources [16]. These projects are intrinsically linked to the ecology of the
study species, and are often initiated in OMOs to take advantage of their existing adaptation to
environmental gradients throughout their range. Genome scans are also used to look for
variation in gene flow across the genome to elucidate the process of ongoing ecological
speciation which might be accompanying adaptation and/or to detect adaptive introgression
[17]. Like scans for selection, these studies are intimately tied to the ecology of a species and
can be greatly diversified by using various OMOs as subjects.

One of the most efficient ways to elucidate molecular mechanisms of acclimatization and
adaptation is gene expression analysis applied in ecological context [18], in other words
comparing gene expression across environmental gradients in response to natural stressors,
and in reciprocal transplantation and common garden experiments. These possibilities are not
yet fully realized by OMO researchers, mainly because the low-cost gene expression profiling
alternatives have only recently become available. Gene expression is also an excellent com-
plement to selection and introgression scans [13] to help to substantiate the special role of
genes highlighted by the scans.
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Glossary

Allele frequency spectrum (AFS):
the same as site frequency spectrum
(SFS), a histogram of the number of
segregating variants binned by their
frequency. Can be n-dimensional for
n populations ([41,52] for
illustrations).

Denser-than-LD genotyping:
genotyping of several polymorphic
markers per linkage disequilibrium
(LD) block, which is the typical
distance between markers in the
genome across which their
genotypes remain correlated as a
result of infrequent recombination.
Exome: portion of the genome
represented in the mature (spliced)
RNA.

Fuzzy genotyping: performing
analyses based on probabilities of
alternative genotypes at each SNP
without trying to decide which
genotype is true [42,92]. This
method is designed for lower-
coverage data (as low as 1.5-2x)
and is implemented in the software
package ANGSD (analysis of next-
generation sequencing data [93]).
Genome scanning: profiling of
genotypes in one or more
populations looking for genomic
regions exhibiting unusual patterns.
Typically used to look for signatures
of natural selection or introgression.
Hard-call genotyping: identifying
the most likely genotype at each
SNP site and performing
downstream analyses assuming that
these genotypes are true. Applicable
for data with 10x or better coverage
[40].

Restriction site-associated DNA
(RAD) sequencing: a family of
diverse genotyping methods [45,46]
that sequence short fragments of the
genome adjacent to recognition site
(s) for specific restriction
endonuclease(s).

Third-generation sequencing:
methods for sequencing long
individual nucleic acid molecules;
these include single molecule real-
time (SMRT) sequencing by PacBio
and nanopore sequencing by Oxford
Nanopore Technologies (ONT).
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Last but not least, the role of epigenetics in acclimatization and adaptation is now one of the
hottest topics in molecular ecology, often eliciting more excitement and press coverage than is
warranted by existing data [19]. Whether environmentally induced epigenetic modifications play
any role in acclimatization and adaptation remains unresolved. Among many covalent chro-
matin modifications, DNA methylation currently receives the most attention in OMOs. While
vertebrates show high DNA methylation throughout the genome, invertebrates and plants
methylate their genomes sparsely and mostly in protein-coding regions (so-called gene body
methylation, GBM [20,21]). The function of this ubiquitous and evolutionarily ancient DNA
modification remains unclear [21,22], and the greatest challenge in the next few years will be to
decipher it. Once again, diversity of ecological contexts accessible through OMOs makes them
ideal subjects for addressing this question.

Reference Sequences

All ecological genomic techniques (with a few exceptions, discussed later in this paper) are
organized in a similar fashion: the data come in the form of anonymous sequencing reads
obtained from experimental subjects, and these reads must be ‘mapped’ (matched) against
some type of reference sequence (genome or transcriptome). The experimental reads must be
accurate but can be short, making current lllumina HiSeq the technology of choice for their
production. Requirements for the reference sequence vary considerably depending on the
biological question being asked (Table 1), but there is one commonality: the reference does not
need to be very accurate in terms of per-base error rate; it must only be sufficiently accurate to
allow unambiguous mapping of experimental reads. The gold standard of genome sequence
quality, 99.9% accuracy (or ‘Q30’ quality score), would not provide appreciable improvement to
mapping efficiency compared to a rough draft accuracy of 99%. In addition, polymorphism in
OMO populations is typically on the order of 1% or higher, and thus the reference is inevitably
inaccurate with respect to the reads anyway. In fact, it is perfectly feasible (and in some cases
even preferable, Table 1) to use a deliberately inaccurate reference from a closely related group
to ‘polarize’ allelic states into ancestral and derived [23].

While per-base accuracy is not a major issue, the majority of OMO questions (with the notable
exception of population biology, see below) require a highly contiguous reference. To generate
such areference there are three highly cost-efficient options available at the moment, the choice of
which to use should be largely dictated by logistics and access to adequate training. It must be
emphasized that, for all these methods, it is crucially important to obtain high molecular weight
DNA in fragments exceeding 3040 kb in length [24]. The technology offered by 10 x Genomics
[25] attaches unique barcodes to short reads originating from the same long DNA fragment, and
this allows the assembly of short reads into very long (and accurate) haplotypes. A pair of

third-generation sequencing methods are capable of producing exceedingly long reads (tens
to hundreds of kb) resulting in qualitatively more-contiguous genome assemblies than was
previously possible [24,26-29]. Currently, read accuracy and cost of data for PacBio (Sequel
system) and Oxford Nanopore Technologies (ONT; R9 flow cell) are equivalent. Although the raw
read accuracy of these methods s low (ca90%), it is sufficient for de novo OMO genome assembly
based only onthe long-read data [30]. Nonetheless, the best results are achieved by ‘polishing’ (i.
e., error-correcting) the long-read assembly using highly accurate lllumina reads ([31]; a recent
benchmarking study of long-read assembly pipelines is presented in [27]).

A reasonably contiguous transcriptome is a viable and cost-efficient alternative to whole-

genome sequence for methods that focus on protein-coding regions, such as exome
sequencing (for genome scans), gene expression analysis, and gene body methylation [21]
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analysis. For OMOs with very large genomes, such as salamanders [32], transcriptome-based
approaches might be the only viable genomics option. Ideally the transcriptome should
correspond to the same developmental and physiological state, and the same body part,
that are the subject of the OMO study. Until recently the standard way to generate a de novo
transcriptome was to perform high-coverage RNA-seq of a single individual, assemble the
results with Trinity [33], and annotate using blast2GO [34] or the recently introduced eggNOG-
mapper [35]. This whole assembly and annotation process can be completed within a day, and
produces relatively low-contiguity transcriptomes that are still suitable as references, provided
that the potential caveats (occurrence of chimeric, fragmented, or duplicated transcripts,
merged paralogous sequences, as well as missing or incorrect annotations) are recognized
[36]. For the diversity of methods for de novo transcriptome next-generation sequencing and
assembly see [2,37]; see also the detailed walkthrough for RNA-seq data filtering, assembly,
and transcriptome quality assessment'. With third-generation long-read sequencing technolo-
gies coming of age, it will be possible to generate much higher-quality de novo transcriptomes
by directly sequencing full-length transcripts [38]. Kits and protocols for full-length third-
generation transcriptome sequencing are already available (iso-seq by PacBio, and direct
RNA/cDNA sequencing by ONT), and methods to derive de novo gene models from such data
are under active development (e.g., [39]).

Sequencing Coverage and PCR Duplicates

There are two ways to perform genotyping — hard-call genotyping for high-coverage data
and fuzzy genotyping for low-coverage data. The fuzzy approach is very appealing for OMOs
because it provides unbiased estimates of allele frequencies at much lower sequencing
coverage than the hard-call approach (1.5-2x versus >10x) [40]. This frees the budget to
increase sample size, which in turn results in much higher accuracy of allele frequency
estimation in populations [41,42]. The only potential source of bias in fuzzy genotyping is
its reliance on the assumption of random mating (Hardy-Weinberg equilibrium) to calculate
anticipated proportions of genotypes in a population. This assumption approximately holds for
outbred natural populations (for example, humans or mice), and for highly deviant cases such
as domesticated or asexually reproducing populations it is possible to account for individual-
level inbreeding [43]. Nevertheless, fuzzy analysis will try to smoothen any non-random-mating
signals in the data, such as hidden population structure or genetic clines, especially at very low
coverage when the data are relatively weak and the method must rely more on the prior
assumptions. Whether this ‘smoothing’ tendency could lead to incorrect inferences remains
unclear. It also should be noted that hidden population structure or genetic clines would create
biases in any analysis if left unaccounted for, and they must therefore be detected at the initial
data exploration stage (Box 1).

Sequencing coverage must be calculated after removal of PCR duplicates. Generally, PCR
duplicates must be removed for the statistical methods of both hard-call and fuzzy approaches
to be applicable [44,45] (Box 1). Identifying PCR duplicates based on identical mapping location
is a standard procedure in whole-genome sequencing (WGS); however, this used to be a
challenge for restriction site-associated DNA (RAD) sequencing that by design generates
reads mapping to the same location [45,46]. In the majority of current RAD implementations,
PCR duplicates are identified by degenerate tags that uniquely mark each independently
generated fragment of a given locus [47]. The same degenerate tag approach for PCR
duplicate removal is implemented in the OMO-friendly gene expression analysis method,
TagSeq [48,49]. Counter-intuitively, the proportion of PCR duplicates depends not on the
number of PCR cycles performed during library preparation, but on the ratio between the
number of reads sequenced (N,) and the number of unique fragments present in the sample
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Box 1. Best Practices for OMO Genomics

(i) Use material from a single individual to generate the reference (either genome or transcriptome) to minimize the effects
of natural polymorphisms on assembly [94].

(i) Remove PCR duplicates, otherwise statistical methods based on read counts will not be applicable [44,45].

(iii) As an initial exploratory step, apply strong filters and examine data using ordination techniques (principal component
and related analyses [95,96]). This step is necessary to identify outlier samples, sampling artifacts (wrong species
collected or same specimen sampled twice), natural clones, and hidden population structure.

(iv) Try several data-filtering settings to confirm that the results are robust. Report the exact filtering settings used.

(v) As soon as the manuscript or preprint is submitted (and ideally sooner) — share new sequencing data with the
research community; announce data availability through professional email lists and social media and make them
downloadable; post links to datasets, well-commented scripts, and bioinformatic walkthroughs in an open-access
repository (such as GitHub) such that the analyses can be evaluated and reproduced by others.

before PCR (Ng). Even with an infinite number of PCR cycles, the fraction of duplicates is the
same as would be expected when sampling N, from Ng with replacement. That said, low Ng
typically necessitates more PCR cycles during library preparation, but these additional cycles
do not cause additional PCR duplicates — they are only an indication that Ny is low and
duplicates will be abundant. The only way to reduce the proportion of duplicates is to ensure
that the original sample is highly representative (i.e., Ng is not much smaller than N,).

Filters

The lack of clear guidelines for genotype filtering is arguably the greatest source of irreproduc-
ibility in ecological genomics. It is essential to explore different filter settings to confirm that the
final results are robust, and always report the filter settings used (Box 1).

There are two types of filters: those that distort the allele frequency spectrum (AFS) and
those that do not. The former class, filters giving preference to more common variants (such as
snp_pvalue filter in the software package ANGSD - analysis of next-generation sequencing
data) are directly or indirectly dependent on allele frequency (AF). They are very powerful in
eliminating false SNP calls caused by sequencing errors, which manifest themselves as very
rare alleles appearing only once or twice in the whole dataset. AF-based filters should be
applied in any situation when rare alleles are irrelevant for analysis. Examples include studies of
relatedness, principal component analysis of genetic diversity, genotype—phenotype associa-
tion, population differentiation based on fixation index (Fst), STRUCTURE or ADMIXTURE, and
genome scanning.

AFS-preserving filters are less efficient than AF-based filters in removing sequencing errors, but
they are the only type that should be used if the main analysis is to be based on the AFS. For
other studies, these filters should also be used in combination with the AF-based filter. At the
very least, the data should be filtered for mapping quality (uniqueness of read mapping in the
genome) and base call quality (probability of erroneous base calls in the read). It is also
important to filter against excessive heterozygosity, which is a common OMO artifact if the
draft reference contains a single locus instead of several paralogous copies (‘lumped paral-
0gs’). One of the most powerful AFS-preserving filters is the genotyping rate filter that requires
each SNP site to be genotyped in a specified minimal proportion of all individuals. Ideally,
genotyping rate should be kept above 80%, and definitely above 50%. This is particularly
important for RAD methods which otherwise would suffer from null alleles (‘allele dropout’) due
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to SNPs in the restriction enzyme recognition sequence [45,50]. Other useful AFS-preserving
filters are the strand bias filter, that controls for evenness of direct and reverse strand
representation [this filter is not applicable to RAD data except GBS (genotyping by sequencing)
and 2b-RAD because of strand-specificity of the reads], and the het-bias filter that controls for
evenness of allele representation in a heterozygous individual.

Population Biology

OMO population genetics has not yet fully realized the power and versatility of AFS-based
demographic inference (Box 2). The undistorted AFS (obtained without AF-based filters, see
above) can be used to derive the whole suite of demographic parameters, most importantly
population sizes, migration rates, and history of population splits, and statistically test for their
significance (Box 1). These methods are based on coalescent simulations (Fastsimcoal2 [51]),
diffusion approximation (dadi, [52]), or ordinary differential equations (Moments [53]). The new
‘Moments’ method is particularly promising because it is substantially faster and more flexible
than its predecessors. For inferring historical changes in population size from a single-popula-
tion AFS the model-free StairwayPlot method [54] provides an easy solution.

The data required for all these analyses are several thousand biallelic SNPs, aggressively filtered
to exclude potential sites under selection [55]. These SNPs can be scattered throughout the
genome, and this makes various flavors of RAD sequencing best suited for this analysis. Ideally
(although not necessarily) these SNPs must not be physically linked to represent independent
datapoints, in which regard it is worth mentioning that RAD flavors differ considerably in the
number of unlinked genomic loci that they interrogate [45,46]. In our experience, 8adi [52] and

Box 2. AFS Models

In the world of OMOs we are usually dealing with samples from many populations, which would be difficult or impossible
to model simultaneously; moreover, many populations are usually left unsampled. To infer meaningful demographic
parameters in a sparsely sampled system of many populations, a practical solution is to perform 2D AFS analysis of all
population pairs [55]. Typical hypotheses and corresponding tests are:

(i) Are the two populations demographically separate?

Compare model with split to model without split, under which the two populations are regarded as two samples from the
same one.

(ii) If yes, is there still gene flow between them?
Compare split models with and without migration.
(iii) If yes, is the gene flow symmetric or asymmetric?

Compare split model with two potentially different migration rates to a split model with a single symmetrical migration
rate.

(iv) Was population size stable or went through changes?
Reconstruct population size history using StairwayPlot [54].

Simple command-line scripts for AFS plotting and running basic pairwise models in Moments can be found at https://
github.com/z0on/AFS-analysis-with-moments. To access the full potential of Moments, however, the user is expected
to compose their own python scripts.
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Moments [53] work robustly with 10-15 thousand unlinked SNPs (a typical output from 2bRAD
[56]) when analyzing populations individually or in pairs [55] (Box 1).

A major advantage of RAD-based AFS analysis for OMOs is that genotyping can be performed
based on RAD reads themselves, without the need for a reference genome. Many de novo RAD
pipelines exist that can assemble RAD reads into loci [45], followed by hard-call genotyping.
Fuzzy genotyping de novo can also be implemented by extracting the assembled RAD loci and
using them as the ‘read-based reference’ [56] to map the original reads to. This would generate
BAM files that could be fed into the ANGSD software package.

With all the appeal of de novo analysis, using a reference genome to call RAD genotypes
provides three important advantages. First, it identifies physically linked (and thus potentially
non-independent) groups of SNPs to be resampled as units during bootstrap. Second,
mapping to reference automatically discards reads from contaminant DNA sources (viruses,
bacteria, ingested food, symbionts, etc). To be able to discard such contaminants in de novo
RAD pipeline, the experiment must include at least one sample generated from a ‘clean’ source
and consider only the RAD loci observed in that sample. Third, and most importantly, with
reference-based genotyping it is possible to discriminate between ancestral and derived SNP
alleles, and this gives considerably higher power to the AFS-based inference. Counter-intui-
tively, the best reference for this purpose is not a genome of the species under investigation but
a genome of a related outgroup species that separated from the focal one a few million years
ago. SNP states in the outgroup can be assumed to represent the ancestral states (e.g., [23]).
Although some proportion of ancestral states will be misidentified owing to incomplete lineage
sorting, convergence, or technical artifacts, this error is easy to account for by including a single
additional parameter into the model that specifies the proportion of the AFS that needs to be
flipped when modeling the data (e.g., [57]).

Genome Scanning

Because outlier regions by definition occupy only a small portion of the genome, and typically
do not form a single cluster, their confident detection requires denser-than-LD genotyping. It
has been argued that RAD-like approaches sample the genome too sparsely to satisfy this
requirement [58,59]. Other researchers disagree [60]; indeed, many successful genome scans
based on RAD have been published [61]. Nevertheless, RAD cannot be generally recom-
mended for genome scanning because by its very design it leaves a considerable fraction of the
genome unexplored. As an alternative, low-coverage WGS data suitable for fuzzy genotyping
can be obtained for about $50 per sample, including both library preparation and sequencing
costs [62]. Another attractive RAD alternative suitable for even very large genomes is ‘home-
made exome’ sequencing: in OMOs, the exome can be efficiently captured using bead-bound
normalized cDNA [63] obtained from the OMO itself (EecSeq — expressed exome capture
sequencing; [97]). Such sequencing would interrogate essentially all functionally interpretable
genetic variation for a cost similar to RAD. Even when linkage disequilibrium (LD) is extensive
enough for RAD to produce denser-than-LD genotyping — for example, when the population is
known to have gone through a recent bottleneck or represents experimentally generated
progeny of a few parental individuals crossed several generations ago — a better option might
be to take full advantage of the extended LD and go instead for the ultra-low coverage WGS
[62] followed by haplotype imputation [64]. This approach can generate full-genome phased
data, an exciting possibility that thus far remains unexplored in OMOs. Sequencing of popula-
tion pools (PoolSeq [65,66)) is generally not recommended because it does not allow follow-up
analyses based on individual genotypes [such as principal component analysis (PCA),
STRUCTURE, or genotype—phenotype association], and does not save much cost compared
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to low-coverage WGS [62]. Finally, genotyping based on transcriptomic data (RNA-seq or
TagSeq) is certainly possible [67,68], but it is unclear how (and in which cases) to account for
variation in genotyping accuracy depending on the expression level of genes and alleles.

Gene Expression

Gene expression by itself cannot be a conclusive proof of involvement of specific genes and
pathways in the process of interest, especially in OMOs, in which gene annotations are tentative
at best. Nevertheless, with appropriate experimental design strong and definitive conclusions
can be reached by carefully characterizing the overall patterns of gene expression variation. For
example, Toth et al. [69] compared gene expression in brains of paper wasp castes to show
that the origin of the worker caste involved heterochronic redeployment of maternal care
program. Voolstra et al. [70] have demonstrated that in a reef-building coral establishment of
symbiosis with an appropriate strain of algae does not elicit a transcriptomic response from the
host, and therefore this process depends not on active recognition by the host but on the ability
of the algae to enter the host in the ‘stealth” manner. Reid et al. [71] found that populations of
killifish adapting to toxic pollutants repeatedly lost (yes, lost — surprisingly) the capacity to
respond to these pollutants at the gene expression level. Kenkel and Matz [72] have shown that
overall gene expression plasticity varies among coral populations, and that this variation
contributes to local adaptation. Campbell-Staton et al. [73] have shown that a green anole
population that experienced a single cold snap acquired stable gene regulatory modifications to
make its gene expression patterns more similar to those of cold-adapted populations from
higher latitudes. The latter two studies also employed one of the most powerful annotation-
independent gene expression analysis methods, WGCNA (weighted gene coexpression net-
work analysis [74]), to reduce the whole-genome gene expression data to a few dozen
coregulated gene clusters for easy exploration of complex experimental designs.

One OMO-suitable approach to functionally interpret gene expression patters is to integrate
over large evolutionarily conserved functional groups of genes, which averages over occasion-
ally missing or inaccurate annotations. This approach is implemented in a diverse family of
methods based on gene ontology (GO) [75] which test for over-representation of specific
functional categories among significantly differentially expressed genes. The need to impose an
arbitrary significance cutoff for gene expression is circumvented in methods such as GO_MWU
[76] or GSEA [77], which test whether a specific functional category is enriched with either up-
or downregulated genes. There is also a method similar to GO_MWU that is based on even
broader eukaryotic orthologous gene groups (KOG [35,78]), which is particularly suitable for
statistical comparison of very diverse datasets, even from different OMO species. For example,
Strader et al. [79] used this method (R package KOGMWU [80]) to demonstrate that the red
fluorescent phenotype in coral larvae is associated with a physiological state resembling midge
diapause (stress-tolerant quiescent state), which in the coral larvae can be interpreted as
adaptation for long-range dispersal.

Typical RNA-seq [81] resequences the whole transcriptome in each sample, but there is a
much more economical way to count abundances of protein-coding transcripts: sequence only
a single fragment for each transcript molecule and count reads corresponding to each gene.
TagSeq [48] sequences a single randomly generated fragment near the 3'-end of the transcript,
which is the most economic use of sequencing effort and removes bias towards longer
transcripts. In a recent benchmarking study TagSeq was even more accurate than the standard
RNA-seq in measuring transcript abundances, despite nearly 10-fold lower cost [49]. The more
recently introduced QuantSeq [82] is conceptually similar to TagsSeq but uses a different library
preparation procedure, implemented as a kit from Lexogen'. Both TagSeq and QuantSeq
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require small quantities of initial material (10 ng of total RNA), and their bioinformatic analysis is
highly simplified compared to RNA-seq. TagSeq was originally designed for OMOs and
therefore its pipeline" uses transcriptome rather than genome as a reference. All that being
said, the major strength of TagSeq and QuantSeq - specific focus on quantification of
polyadenylated transcripts — is at the same time their major weakness: these methods do
not provide any other information about transcriptome than can be extracted from typical RNA-
seq data, such as splice isoforms, structural rearrangements of the coding sequence, and non-
coding regulatory RNAs.

DNA Methylation

While the industry-standard method of DNA methylation analysis is the whole-genome bisulfite
sequencing (WGBS-seq [83]), much more OMO-friendly approaches exist. In ecology, char-
acterization of general patterns of variation with respect to environment, population, and
individual genotype is of prime interest but requires analysis of a large number of individuals.
For general partitioning of variation in DNA methylation highly cost-efficient solutions are
provided by RRBS-seq (reduced representation bisulfite sequencing-seq [84]) and especially
methylRAD [85], which are basically RAD-like reduced representation methods for quantifying
CpG methylation. Like genotyping RAD approaches, these methods can be implemented
without a reference genome.

The next level of inquiry is to identify specific genes undergoing epigenetic modification, which
requires gene-level resolution and must interrogate every gene in the genome. Pull-down
methods MBD-seq (methyl-CpG binding domain-based capture and sequencing [86]) and
meDIP-seq (methyl-DNA immunoprecipitation and sequencing [87]) provide the most eco-
nomical solution in this case [88]. Unlike WGBS-seq, they concentrate sequencing effort on the
methylated portion of the genome, which saves cost dramatically for non-vertebrate OMOs
(invertebrates and plants) because their genomes are only sparsely methylated. In addition,
because in non-vertebrate OMOs DNA methylation predominantly occurs in coding regions
[20,21], it is feasible to use transcriptome instead of genome data as a reference for these
analyses.

Single-base resolution for DNA methylation would rarely be of interest in ecological genomics of
OMOs. Its only advantage is potentially better insight into the molecular mechanisms involved,
which only becomes relevant after patterns of methylation variation with respect to the
environment are established. Nevertheless, if required, such ultimate resolution can be
achieved via direct detection of modified bases by nanopore sequencing [89]. This exciting
new development still requires validation in complex genomes, however. Although SMRT
(single molecule, real-time) sequencing by PacBio also claims the ability to detect methylated
DNA bases [90,91], it appears to have low sensitivity for the most ubiquitous DNA methylation
mark (5-methylcytosine). It is also important to remember that, as in WGBS-seq, achieving
robust per-base methylation quantitation with these technologies will require very high
sequencing coverage.

Concluding Remarks

In the past 5-7 years a great diversity of low-cost genomic approaches have emerged, some of
them driven by advances in sequencing itself (such as 10x Genomics and ONT nanopore
sequencing), and some, such as fuzzy genotyping and AFS-based demographics, by advan-
ces in statistical analysis of genome-wide variation. These methods now make it entirely
feasible to address fundamental questions of ecological genomics in any organism within a

Trends in Genetics, Month Year, Vol. xx, No. yy 9



TIGS 1421 No. of Pages 12

Trends in Genetics

few years of work, without any prior sequencing resources (see Outstanding Questions). As a
result, the power to answer broadly relevant ecological questions now more than ever depends
on the good choice of the subject. It is time to go back to studies of natural history to identify the
most curious OMOs and capitalize on their peculiarities.
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Outstanding Questions

Are there any biases specific to the
probabilistic  (‘fuzzy’)  genotyping
approach based on low-coverage
data? Several studies have demon-
strated how fuzzy genotyping can
eliminate allele frequency biases at
low sequencing coverage, but are
we sacrificing anything to achieve this?

What are the limits to genotype impu-
tation in natural populations? Which
pilot experiments could help decide
whether ultra-low coverage WGS with
imputation might be a feasible strategy
for a particular organism?

Can methylated DNA bases be reliably
detected by third-generation sequenc-
ing in complex genomes? Pilot data on
bacterial DNA are very promising, but
additional  validation in complex
genomes is required.
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